Target Selection for Structural Genomics: An Overview View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Russell L. Marsden , Christine A. Orengo

ABSTRACT

The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics "pipeline." Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding "problematic" proteins while also ensuring the ultimate goals of the project are followed. More... »

PAGES

3-25

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2004-05. Progress towards mapping the universe of protein folds in GENOME BIOLOGY
  • 2001-06-01. Completeness in structural genomics in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-12. Protein superfamilles and domain superfolds in NATURE
  • 2004-08. Structural genomics and structural biology: compare and contrast in GENOME BIOLOGY
  • 2000-11-01. New roles for structure in biology and drug discovery in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1

    DOI

    http://dx.doi.org/10.1007/978-1-60327-058-8_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011333421

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18542854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Structural Homology, Protein", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Biochemistry and Molecular Biology Department, University College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsden", 
            "givenName": "Russell L.", 
            "id": "sg:person.0774514702.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774514702.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Biochemistry and Molecular Biology Department, University College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orengo", 
            "givenName": "Christine A.", 
            "id": "sg:person.01136244107.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)00992-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000163094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)00992-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000163094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1586/14789450.1.2.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000166802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2003.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002894089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2006.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003359238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.9.1.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004561559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.9.1.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004561559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(96)80056-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004746701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006831777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340090107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007742676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340090107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007742676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008993836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011156269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-9-343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013323041", 
              "https://doi.org/10.1186/gb-2004-5-9-343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013558375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013612578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2003.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014415379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015734752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016285310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017305614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.4315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018016237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(96)66035-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018458717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1121018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019170932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2004.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020480246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0307204101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020785267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021169618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2006.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022519099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/16.10.915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023326450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025951311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028224412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(02)00861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029150442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(02)00861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029150442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.09.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030209790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.05.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030482208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.03.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032995227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/80691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034858252", 
              "https://doi.org/10.1038/80691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.9.847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035069268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038367016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/5.1.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038871883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/372631a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041521574", 
              "https://doi.org/10.1038/372631a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2003.11.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042203636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042420936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00059-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043545996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00059-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043545996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043594667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1517/17460441.1.2.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043995944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560060606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044153185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045330660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/88640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046431857", 
              "https://doi.org/10.1038/88640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046558228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050738270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051769701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(97)00260-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052608197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-5-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191830", 
              "https://doi.org/10.1186/gb-2004-5-5-107"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics \"pipeline.\" Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding \"problematic\" proteins while also ensuring the ultimate goals of the project are followed.", 
        "editor": [
          {
            "familyName": "Kobe", 
            "givenName": "Bostjan", 
            "type": "Person"
          }, 
          {
            "familyName": "Guss", 
            "givenName": "Mitchell", 
            "type": "Person"
          }, 
          {
            "familyName": "Huber", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-60327-058-8_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-58829-809-6", 
            "978-1-60327-058-8"
          ], 
          "name": "Structural Proteomics", 
          "type": "Book"
        }, 
        "name": "Target Selection for Structural Genomics: An Overview", 
        "pagination": "3-25", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-60327-058-8_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "35feecda6c4e72ddac21e494be8ac4da00f19475700a649c0f375b7e7d8b2735"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011333421"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18542854"
            ]
          }
        ], 
        "publisher": {
          "location": "Totowa, NJ", 
          "name": "Humana Press", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-60327-058-8_1", 
          "https://app.dimensions.ai/details/publication/pub.1011333421"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000250.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-60327-058-8_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    278 TRIPLES      23 PREDICATES      88 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-60327-058-8_1 schema:about N029afdeff5794cd7ab80a9ab8c0d3066
    2 N06a06aa6641f410388ec6b3929d9ce1a
    3 N303b606405274317925648ae7b4edd66
    4 N7922c675444048fa94b5aad135fbdf7c
    5 Nb82f8ae3cde5448c966f47a0bd74b5f1
    6 Ne4c6405d286247709f345bac0218a943
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author N5e20db34c60e4e028ea02bee651127d0
    10 schema:citation sg:pub.10.1038/372631a0
    11 sg:pub.10.1038/75556
    12 sg:pub.10.1038/80691
    13 sg:pub.10.1038/88640
    14 sg:pub.10.1186/gb-2004-5-5-107
    15 sg:pub.10.1186/gb-2004-5-9-343
    16 https://doi.org/10.1002/pro.5560060606
    17 https://doi.org/10.1002/prot.10282
    18 https://doi.org/10.1002/prot.340090107
    19 https://doi.org/10.1006/jmbi.2000.4315
    20 https://doi.org/10.1016/0022-2836(70)90057-4
    21 https://doi.org/10.1016/0022-2836(81)90087-5
    22 https://doi.org/10.1016/j.jmb.2003.11.053
    23 https://doi.org/10.1016/j.jmb.2004.05.028
    24 https://doi.org/10.1016/j.jmb.2004.09.076
    25 https://doi.org/10.1016/j.jmb.2005.03.037
    26 https://doi.org/10.1016/j.jsb.2006.03.009
    27 https://doi.org/10.1016/j.sbi.2003.10.004
    28 https://doi.org/10.1016/j.sbi.2004.04.005
    29 https://doi.org/10.1016/j.sbi.2006.05.003
    30 https://doi.org/10.1016/j.str.2003.10.002
    31 https://doi.org/10.1016/s0022-2836(02)00992-0
    32 https://doi.org/10.1016/s0022-2836(05)80134-2
    33 https://doi.org/10.1016/s0076-6879(96)66035-2
    34 https://doi.org/10.1016/s0959-440x(96)80056-x
    35 https://doi.org/10.1016/s0969-2126(02)00861-4
    36 https://doi.org/10.1016/s0969-2126(97)00260-8
    37 https://doi.org/10.1016/s1359-0278(97)00059-x
    38 https://doi.org/10.1073/pnas.0307204101
    39 https://doi.org/10.1093/bib/5.1.23
    40 https://doi.org/10.1093/bioinformatics/16.10.915
    41 https://doi.org/10.1093/bioinformatics/17.9.847
    42 https://doi.org/10.1093/bioinformatics/bth240
    43 https://doi.org/10.1093/bioinformatics/bth300
    44 https://doi.org/10.1093/bioinformatics/bti031
    45 https://doi.org/10.1093/nar/25.17.3389
    46 https://doi.org/10.1093/nar/28.1.27
    47 https://doi.org/10.1093/nar/28.1.304
    48 https://doi.org/10.1093/nar/gkg563
    49 https://doi.org/10.1093/nar/gkh377
    50 https://doi.org/10.1093/nar/gki019
    51 https://doi.org/10.1093/nar/gki410
    52 https://doi.org/10.1093/nar/gkj057
    53 https://doi.org/10.1093/nar/gkj079
    54 https://doi.org/10.1093/nar/gkj149
    55 https://doi.org/10.1093/nar/gkj157
    56 https://doi.org/10.1093/nar/gkj494
    57 https://doi.org/10.1093/nar/gkl262
    58 https://doi.org/10.1110/ps.9.1.197
    59 https://doi.org/10.1126/science.1065659
    60 https://doi.org/10.1126/science.1121018
    61 https://doi.org/10.1371/journal.pcbi.0010031
    62 https://doi.org/10.1517/17460441.1.2.123
    63 https://doi.org/10.1586/14789450.1.2.239
    64 schema:datePublished 2008
    65 schema:datePublishedReg 2008-01-01
    66 schema:description The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics "pipeline." Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding "problematic" proteins while also ensuring the ultimate goals of the project are followed.
    67 schema:editor Nf14458de8da648c88b6842d34287da32
    68 schema:genre chapter
    69 schema:inLanguage en
    70 schema:isAccessibleForFree false
    71 schema:isPartOf N451c91107144448595ac33ff6ad8191d
    72 schema:name Target Selection for Structural Genomics: An Overview
    73 schema:pagination 3-25
    74 schema:productId N3263b1260bcf4bb491892ac4b3c08dda
    75 N58637de57d6c44edbea5887ab92395dd
    76 Nc0493b5e87aa436f975e35b26374dc03
    77 Nd7243c63ad594167b4a4ddd85991f25a
    78 schema:publisher N0a0d063a513349e4ac7a8461c62bab89
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011333421
    80 https://doi.org/10.1007/978-1-60327-058-8_1
    81 schema:sdDatePublished 2019-04-15T12:30
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N2e98b62fb77f4ffcb0e9d160cbae54a0
    84 schema:url http://link.springer.com/10.1007/978-1-60327-058-8_1
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset chapters
    87 rdf:type schema:Chapter
    88 N029afdeff5794cd7ab80a9ab8c0d3066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Animals
    90 rdf:type schema:DefinedTerm
    91 N06a06aa6641f410388ec6b3929d9ce1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Humans
    93 rdf:type schema:DefinedTerm
    94 N0a0d063a513349e4ac7a8461c62bab89 schema:location Totowa, NJ
    95 schema:name Humana Press
    96 rdf:type schema:Organisation
    97 N2e98b62fb77f4ffcb0e9d160cbae54a0 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N2fe1aeedaa774b4384f0eccff8cd5f95 rdf:first sg:person.01136244107.52
    100 rdf:rest rdf:nil
    101 N303b606405274317925648ae7b4edd66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Structural Homology, Protein
    103 rdf:type schema:DefinedTerm
    104 N3263b1260bcf4bb491892ac4b3c08dda schema:name pubmed_id
    105 schema:value 18542854
    106 rdf:type schema:PropertyValue
    107 N3b37e08dfc724d74be33d26db9bf590f rdf:first N6bed47c056e146eaad2a41912fed7b63
    108 rdf:rest rdf:nil
    109 N451c91107144448595ac33ff6ad8191d schema:isbn 978-1-58829-809-6
    110 978-1-60327-058-8
    111 schema:name Structural Proteomics
    112 rdf:type schema:Book
    113 N50c4cdad17f54637992c98b171aa58f2 schema:familyName Guss
    114 schema:givenName Mitchell
    115 rdf:type schema:Person
    116 N58637de57d6c44edbea5887ab92395dd schema:name readcube_id
    117 schema:value 35feecda6c4e72ddac21e494be8ac4da00f19475700a649c0f375b7e7d8b2735
    118 rdf:type schema:PropertyValue
    119 N5e20db34c60e4e028ea02bee651127d0 rdf:first sg:person.0774514702.48
    120 rdf:rest N2fe1aeedaa774b4384f0eccff8cd5f95
    121 N6bed47c056e146eaad2a41912fed7b63 schema:familyName Huber
    122 schema:givenName Thomas
    123 rdf:type schema:Person
    124 N7922c675444048fa94b5aad135fbdf7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Computational Biology
    126 rdf:type schema:DefinedTerm
    127 N9158f0ff3b6b46e9b64ff6fc38fe25f8 schema:familyName Kobe
    128 schema:givenName Bostjan
    129 rdf:type schema:Person
    130 Nb82f8ae3cde5448c966f47a0bd74b5f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Databases, Protein
    132 rdf:type schema:DefinedTerm
    133 Nc0493b5e87aa436f975e35b26374dc03 schema:name doi
    134 schema:value 10.1007/978-1-60327-058-8_1
    135 rdf:type schema:PropertyValue
    136 Nd2617d8855044d5b90b74c2c6c14cc4d rdf:first N50c4cdad17f54637992c98b171aa58f2
    137 rdf:rest N3b37e08dfc724d74be33d26db9bf590f
    138 Nd7243c63ad594167b4a4ddd85991f25a schema:name dimensions_id
    139 schema:value pub.1011333421
    140 rdf:type schema:PropertyValue
    141 Ne4c6405d286247709f345bac0218a943 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genomics
    143 rdf:type schema:DefinedTerm
    144 Nf14458de8da648c88b6842d34287da32 rdf:first N9158f0ff3b6b46e9b64ff6fc38fe25f8
    145 rdf:rest Nd2617d8855044d5b90b74c2c6c14cc4d
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Genetics
    151 rdf:type schema:DefinedTerm
    152 sg:person.01136244107.52 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    153 schema:familyName Orengo
    154 schema:givenName Christine A.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
    156 rdf:type schema:Person
    157 sg:person.0774514702.48 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    158 schema:familyName Marsden
    159 schema:givenName Russell L.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774514702.48
    161 rdf:type schema:Person
    162 sg:pub.10.1038/372631a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521574
    163 https://doi.org/10.1038/372631a0
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    166 https://doi.org/10.1038/75556
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/80691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034858252
    169 https://doi.org/10.1038/80691
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/88640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046431857
    172 https://doi.org/10.1038/88640
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1186/gb-2004-5-5-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191830
    175 https://doi.org/10.1186/gb-2004-5-5-107
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1186/gb-2004-5-9-343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013323041
    178 https://doi.org/10.1186/gb-2004-5-9-343
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/pro.5560060606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153185
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/prot.10282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043594667
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/prot.340090107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007742676
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1006/jmbi.2000.4315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016237
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.jmb.2003.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042203636
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.jmb.2004.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030482208
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.jmb.2004.09.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030209790
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.jmb.2005.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032995227
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.jsb.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022519099
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.sbi.2003.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014415379
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.sbi.2004.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020480246
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.sbi.2006.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359238
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.str.2003.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002894089
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/s0022-2836(02)00992-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000163094
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s0076-6879(96)66035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458717
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0959-440x(96)80056-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004746701
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0969-2126(02)00861-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029150442
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s0969-2126(97)00260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608197
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/s1359-0278(97)00059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043545996
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1073/pnas.0307204101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020785267
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/bib/5.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038871883
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/bioinformatics/16.10.915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326450
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bioinformatics/17.9.847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035069268
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/bioinformatics/bth240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045330660
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/bioinformatics/bth300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013558375
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/bioinformatics/bti031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008993836
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/28.1.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015734752
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/nar/gkg563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016285310
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gkh377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050738270
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/nar/gki019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028224412
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/nar/gki410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951311
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nar/gkj057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046558228
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/nar/gkj079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051769701
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkj149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612578
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkj157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011156269
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkj494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038367016
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkl262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042420936
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1110/ps.9.1.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004561559
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.1065659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831777
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1126/science.1121018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170932
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1371/journal.pcbi.0010031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324169
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1517/17460441.1.2.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043995944
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1586/14789450.1.2.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000166802
    275 rdf:type schema:CreativeWork
    276 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
    277 schema:name Biochemistry and Molecular Biology Department, University College London, London, UK
    278 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...