Target Selection for Structural Genomics: An Overview View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Russell L. Marsden , Christine A. Orengo

ABSTRACT

The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics "pipeline." Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding "problematic" proteins while also ensuring the ultimate goals of the project are followed. More... »

PAGES

3-25

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2004-05. Progress towards mapping the universe of protein folds in GENOME BIOLOGY
  • 2001-06-01. Completeness in structural genomics in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-12. Protein superfamilles and domain superfolds in NATURE
  • 2004-08. Structural genomics and structural biology: compare and contrast in GENOME BIOLOGY
  • 2000-11-01. New roles for structure in biology and drug discovery in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1

    DOI

    http://dx.doi.org/10.1007/978-1-60327-058-8_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011333421

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18542854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Structural Homology, Protein", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Biochemistry and Molecular Biology Department, University College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsden", 
            "givenName": "Russell L.", 
            "id": "sg:person.0774514702.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774514702.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Biochemistry and Molecular Biology Department, University College London, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orengo", 
            "givenName": "Christine A.", 
            "id": "sg:person.01136244107.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)00992-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000163094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)00992-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000163094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1586/14789450.1.2.239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000166802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2003.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002894089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2006.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003359238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.9.1.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004561559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.9.1.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004561559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(96)80056-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004746701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006831777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340090107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007742676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340090107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007742676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008993836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011156269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-9-343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013323041", 
              "https://doi.org/10.1186/gb-2004-5-9-343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013558375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013612578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2003.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014415379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015734752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016285310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017305614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.4315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018016237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(96)66035-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018458717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1121018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019170932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2004.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020480246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0307204101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020785267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021169618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2006.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022519099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/16.10.915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023326450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025951311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028224412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(02)00861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029150442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(02)00861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029150442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.09.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030209790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.05.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030482208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2005.03.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032995227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/80691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034858252", 
              "https://doi.org/10.1038/80691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/17.9.847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035069268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038367016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/5.1.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038871883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/372631a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041521574", 
              "https://doi.org/10.1038/372631a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2003.11.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042203636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042420936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00059-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043545996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00059-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043545996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043594667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1517/17460441.1.2.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043995944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560060606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044153185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045330660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/88640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046431857", 
              "https://doi.org/10.1038/88640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046558228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050738270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051769701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(97)00260-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052608197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-5-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191830", 
              "https://doi.org/10.1186/gb-2004-5-5-107"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics \"pipeline.\" Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding \"problematic\" proteins while also ensuring the ultimate goals of the project are followed.", 
        "editor": [
          {
            "familyName": "Kobe", 
            "givenName": "Bostjan", 
            "type": "Person"
          }, 
          {
            "familyName": "Guss", 
            "givenName": "Mitchell", 
            "type": "Person"
          }, 
          {
            "familyName": "Huber", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-60327-058-8_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-58829-809-6", 
            "978-1-60327-058-8"
          ], 
          "name": "Structural Proteomics", 
          "type": "Book"
        }, 
        "name": "Target Selection for Structural Genomics: An Overview", 
        "pagination": "3-25", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-60327-058-8_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "35feecda6c4e72ddac21e494be8ac4da00f19475700a649c0f375b7e7d8b2735"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011333421"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18542854"
            ]
          }
        ], 
        "publisher": {
          "location": "Totowa, NJ", 
          "name": "Humana Press", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-60327-058-8_1", 
          "https://app.dimensions.ai/details/publication/pub.1011333421"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000250.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-60327-058-8_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-60327-058-8_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    278 TRIPLES      23 PREDICATES      88 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-60327-058-8_1 schema:about N34c0cb2fb46f447a8842de15da0af533
    2 N6b8d7a02900348a09e2bdd216605a9b3
    3 N9612a0663fe440c3a97154190d3a5bb2
    4 Na4e31d29d2514206b412526daf206c50
    5 Nb0967649294346daa309ef0114051ada
    6 Nf106595b8a4045cd9dbec786253eafd3
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author N473c6667242441e9989c8f588f5c4db1
    10 schema:citation sg:pub.10.1038/372631a0
    11 sg:pub.10.1038/75556
    12 sg:pub.10.1038/80691
    13 sg:pub.10.1038/88640
    14 sg:pub.10.1186/gb-2004-5-5-107
    15 sg:pub.10.1186/gb-2004-5-9-343
    16 https://doi.org/10.1002/pro.5560060606
    17 https://doi.org/10.1002/prot.10282
    18 https://doi.org/10.1002/prot.340090107
    19 https://doi.org/10.1006/jmbi.2000.4315
    20 https://doi.org/10.1016/0022-2836(70)90057-4
    21 https://doi.org/10.1016/0022-2836(81)90087-5
    22 https://doi.org/10.1016/j.jmb.2003.11.053
    23 https://doi.org/10.1016/j.jmb.2004.05.028
    24 https://doi.org/10.1016/j.jmb.2004.09.076
    25 https://doi.org/10.1016/j.jmb.2005.03.037
    26 https://doi.org/10.1016/j.jsb.2006.03.009
    27 https://doi.org/10.1016/j.sbi.2003.10.004
    28 https://doi.org/10.1016/j.sbi.2004.04.005
    29 https://doi.org/10.1016/j.sbi.2006.05.003
    30 https://doi.org/10.1016/j.str.2003.10.002
    31 https://doi.org/10.1016/s0022-2836(02)00992-0
    32 https://doi.org/10.1016/s0022-2836(05)80134-2
    33 https://doi.org/10.1016/s0076-6879(96)66035-2
    34 https://doi.org/10.1016/s0959-440x(96)80056-x
    35 https://doi.org/10.1016/s0969-2126(02)00861-4
    36 https://doi.org/10.1016/s0969-2126(97)00260-8
    37 https://doi.org/10.1016/s1359-0278(97)00059-x
    38 https://doi.org/10.1073/pnas.0307204101
    39 https://doi.org/10.1093/bib/5.1.23
    40 https://doi.org/10.1093/bioinformatics/16.10.915
    41 https://doi.org/10.1093/bioinformatics/17.9.847
    42 https://doi.org/10.1093/bioinformatics/bth240
    43 https://doi.org/10.1093/bioinformatics/bth300
    44 https://doi.org/10.1093/bioinformatics/bti031
    45 https://doi.org/10.1093/nar/25.17.3389
    46 https://doi.org/10.1093/nar/28.1.27
    47 https://doi.org/10.1093/nar/28.1.304
    48 https://doi.org/10.1093/nar/gkg563
    49 https://doi.org/10.1093/nar/gkh377
    50 https://doi.org/10.1093/nar/gki019
    51 https://doi.org/10.1093/nar/gki410
    52 https://doi.org/10.1093/nar/gkj057
    53 https://doi.org/10.1093/nar/gkj079
    54 https://doi.org/10.1093/nar/gkj149
    55 https://doi.org/10.1093/nar/gkj157
    56 https://doi.org/10.1093/nar/gkj494
    57 https://doi.org/10.1093/nar/gkl262
    58 https://doi.org/10.1110/ps.9.1.197
    59 https://doi.org/10.1126/science.1065659
    60 https://doi.org/10.1126/science.1121018
    61 https://doi.org/10.1371/journal.pcbi.0010031
    62 https://doi.org/10.1517/17460441.1.2.123
    63 https://doi.org/10.1586/14789450.1.2.239
    64 schema:datePublished 2008
    65 schema:datePublishedReg 2008-01-01
    66 schema:description The success of the whole genome sequencing projects brought considerable credence to the belief that high-throughput approaches, rather than traditional hypothesis-driven research, would be essential to structurally and functionally annotate the rapid growth in available sequence data within a reasonable time frame. Such observations supported the emerging field of structural genomics, which is now faced with the task of providing a library of protein structures that represent the biological diversity of the protein universe. To run efficiently, structural genomics projects aim to define a set of targets that maximize the potential of each structure discovery whether it represents a novel structure, novel function, or missing evolutionary link. However, not all protein sequences make suitable structural genomics targets: It takes considerably more effort to determine the structure of a protein than the sequence of its gene because of the increased complexity of the methods involved and also because the behavior of targeted proteins can be extremely variable at the different stages in the structural genomics "pipeline." Therefore, structural genomics target selection must identify and prioritize the most suitable candidate proteins for structure determination, avoiding "problematic" proteins while also ensuring the ultimate goals of the project are followed.
    67 schema:editor Nfd7bab95caf04be69d22fc480c710cd1
    68 schema:genre chapter
    69 schema:inLanguage en
    70 schema:isAccessibleForFree false
    71 schema:isPartOf Nf5dba72a44e64cc4a342ecd2fe416bc6
    72 schema:name Target Selection for Structural Genomics: An Overview
    73 schema:pagination 3-25
    74 schema:productId N956d9bb4335c4707bfd179780764edd2
    75 Na50d5fd273cc4b968b2af1cde498e391
    76 Nd77220b12c25460ebce34a6b2d96f78c
    77 Ne35b51a9b04846b4903f8469bcbf2a9b
    78 schema:publisher N8f6c260bbdbc4f71b8a666087f174955
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011333421
    80 https://doi.org/10.1007/978-1-60327-058-8_1
    81 schema:sdDatePublished 2019-04-15T12:30
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Nd6a7db4a4db94debada842256b1aa939
    84 schema:url http://link.springer.com/10.1007/978-1-60327-058-8_1
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset chapters
    87 rdf:type schema:Chapter
    88 N34c0cb2fb46f447a8842de15da0af533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Humans
    90 rdf:type schema:DefinedTerm
    91 N3ca8289871814aa9943deb58f95f10b1 schema:familyName Huber
    92 schema:givenName Thomas
    93 rdf:type schema:Person
    94 N3eecc7ebb91e4d9db36568ffd8075a2d rdf:first N8122e0965aa541aa99e2d5654968631d
    95 rdf:rest N8388046d707f4dd5be5359255ae7a27e
    96 N473c6667242441e9989c8f588f5c4db1 rdf:first sg:person.0774514702.48
    97 rdf:rest N56236d112c3c4e31b89d56614e4407f9
    98 N56236d112c3c4e31b89d56614e4407f9 rdf:first sg:person.01136244107.52
    99 rdf:rest rdf:nil
    100 N618c650a65934571814c99f80fe3ba93 schema:familyName Kobe
    101 schema:givenName Bostjan
    102 rdf:type schema:Person
    103 N6b8d7a02900348a09e2bdd216605a9b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Animals
    105 rdf:type schema:DefinedTerm
    106 N8122e0965aa541aa99e2d5654968631d schema:familyName Guss
    107 schema:givenName Mitchell
    108 rdf:type schema:Person
    109 N8388046d707f4dd5be5359255ae7a27e rdf:first N3ca8289871814aa9943deb58f95f10b1
    110 rdf:rest rdf:nil
    111 N8f6c260bbdbc4f71b8a666087f174955 schema:location Totowa, NJ
    112 schema:name Humana Press
    113 rdf:type schema:Organisation
    114 N956d9bb4335c4707bfd179780764edd2 schema:name doi
    115 schema:value 10.1007/978-1-60327-058-8_1
    116 rdf:type schema:PropertyValue
    117 N9612a0663fe440c3a97154190d3a5bb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Databases, Protein
    119 rdf:type schema:DefinedTerm
    120 Na4e31d29d2514206b412526daf206c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Computational Biology
    122 rdf:type schema:DefinedTerm
    123 Na50d5fd273cc4b968b2af1cde498e391 schema:name readcube_id
    124 schema:value 35feecda6c4e72ddac21e494be8ac4da00f19475700a649c0f375b7e7d8b2735
    125 rdf:type schema:PropertyValue
    126 Nb0967649294346daa309ef0114051ada schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Structural Homology, Protein
    128 rdf:type schema:DefinedTerm
    129 Nd6a7db4a4db94debada842256b1aa939 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nd77220b12c25460ebce34a6b2d96f78c schema:name pubmed_id
    132 schema:value 18542854
    133 rdf:type schema:PropertyValue
    134 Ne35b51a9b04846b4903f8469bcbf2a9b schema:name dimensions_id
    135 schema:value pub.1011333421
    136 rdf:type schema:PropertyValue
    137 Nf106595b8a4045cd9dbec786253eafd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genomics
    139 rdf:type schema:DefinedTerm
    140 Nf5dba72a44e64cc4a342ecd2fe416bc6 schema:isbn 978-1-58829-809-6
    141 978-1-60327-058-8
    142 schema:name Structural Proteomics
    143 rdf:type schema:Book
    144 Nfd7bab95caf04be69d22fc480c710cd1 rdf:first N618c650a65934571814c99f80fe3ba93
    145 rdf:rest N3eecc7ebb91e4d9db36568ffd8075a2d
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Genetics
    151 rdf:type schema:DefinedTerm
    152 sg:person.01136244107.52 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    153 schema:familyName Orengo
    154 schema:givenName Christine A.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136244107.52
    156 rdf:type schema:Person
    157 sg:person.0774514702.48 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    158 schema:familyName Marsden
    159 schema:givenName Russell L.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774514702.48
    161 rdf:type schema:Person
    162 sg:pub.10.1038/372631a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521574
    163 https://doi.org/10.1038/372631a0
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    166 https://doi.org/10.1038/75556
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/80691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034858252
    169 https://doi.org/10.1038/80691
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/88640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046431857
    172 https://doi.org/10.1038/88640
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1186/gb-2004-5-5-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191830
    175 https://doi.org/10.1186/gb-2004-5-5-107
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1186/gb-2004-5-9-343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013323041
    178 https://doi.org/10.1186/gb-2004-5-9-343
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/pro.5560060606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153185
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/prot.10282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043594667
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/prot.340090107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007742676
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1006/jmbi.2000.4315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016237
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.jmb.2003.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042203636
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.jmb.2004.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030482208
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.jmb.2004.09.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030209790
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.jmb.2005.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032995227
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.jsb.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022519099
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.sbi.2003.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014415379
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.sbi.2004.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020480246
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.sbi.2006.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003359238
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.str.2003.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002894089
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/s0022-2836(02)00992-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000163094
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s0076-6879(96)66035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458717
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0959-440x(96)80056-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004746701
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0969-2126(02)00861-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029150442
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s0969-2126(97)00260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608197
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/s1359-0278(97)00059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043545996
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1073/pnas.0307204101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020785267
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/bib/5.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038871883
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/bioinformatics/16.10.915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326450
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bioinformatics/17.9.847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035069268
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/bioinformatics/bth240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045330660
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/bioinformatics/bth300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013558375
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/bioinformatics/bti031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008993836
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/28.1.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015734752
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/nar/gkg563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016285310
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gkh377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050738270
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/nar/gki019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028224412
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/nar/gki410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951311
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nar/gkj057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046558228
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/nar/gkj079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051769701
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkj149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612578
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkj157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011156269
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkj494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038367016
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkl262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042420936
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1110/ps.9.1.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004561559
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.1065659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831777
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1126/science.1121018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170932
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1371/journal.pcbi.0010031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324169
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1517/17460441.1.2.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043995944
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1586/14789450.1.2.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000166802
    275 rdf:type schema:CreativeWork
    276 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
    277 schema:name Biochemistry and Molecular Biology Department, University College London, London, UK
    278 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...