The Pros and Cons of Predicting Protein Contact Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Lisa Bartoli , Emidio Capriotti , Piero Fariselli , Pier Luigi Martelli , Rita Casadio

ABSTRACT

Is there any reason why we should predict contact maps (CMs)? The question is one of the several ‘NP-hard’ questions that arise when striving for feasible solutions of the protein folding problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable problem was to predict a simplified version of the protein structure: a CM. In this chapter, we will clarify that whenever problems are difficult they remain at least as difficult in the process of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and useful representation of protein structures. These two-dimensional representations capture all the important features of a protein fold. We will review the general characteristics of CMs and the methods developed to study and predict them, and we will highlight some new ideas on how to improve CM predictions. More... »

PAGES

199-217

References to SciGraph publications

Book

TITLE

Protein Structure Prediction

ISBN

978-1-58829-752-5
978-1-59745-574-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59745-574-9_8

DOI

http://dx.doi.org/10.1007/978-1-59745-574-9_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032370664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Bartoli", 
        "givenName": "Lisa", 
        "id": "sg:person.01310344144.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310344144.02"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Capriotti", 
        "givenName": "Emidio", 
        "id": "sg:person.0764364505.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764364505.45"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fariselli", 
        "givenName": "Piero", 
        "id": "sg:person.01347332413.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Martelli", 
        "givenName": "Pier Luigi", 
        "id": "sg:person.01235267744.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235267744.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Casadio", 
        "givenName": "Rita", 
        "id": "sg:person.0675702613.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004034549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.218101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008818317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.218101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008818317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/14.11.835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011422668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011694362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011694362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340180402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015585851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340180402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015585851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2004.08.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023452944", 
          "https://doi.org/10.1186/1471-2105-7-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023452944", 
          "https://doi.org/10.1186/1471-2105-7-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0278(97)00060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023928534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(04)74086-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025278960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025461989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031225888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/12.1.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034909061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036026326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043202263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0278(98)00045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044301239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0083-6729(00)58025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046010317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046116987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047010063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053155506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1358861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.061910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.061910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sffcs.1999.814624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095293918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Is there any reason why we should predict contact maps (CMs)? The question is one of the several \u2018NP-hard\u2019 questions that arise when striving for feasible solutions of the protein folding problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable problem was to predict a simplified version of the protein structure: a CM. In this chapter, we will clarify that whenever problems are difficult they remain at least as difficult in the process of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and useful representation of protein structures. These two-dimensional representations capture all the important features of a protein fold. We will review the general characteristics of CMs and the methods developed to study and predict them, and we will highlight some new ideas on how to improve CM predictions.", 
    "editor": [
      {
        "familyName": "Zaki", 
        "givenName": "Mohammed J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bystroff", 
        "givenName": "Christopher", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59745-574-9_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-58829-752-5", 
        "978-1-59745-574-9"
      ], 
      "name": "Protein Structure Prediction", 
      "type": "Book"
    }, 
    "name": "The Pros and Cons of Predicting Protein Contact Maps", 
    "pagination": "199-217", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59745-574-9_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a35a5d7078aabe520ac74d636f5629a2a5087d7ad6ab9d3f273329f2d6ed292"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032370664"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59745-574-9_8", 
      "https://app.dimensions.ai/details/publication/pub.1032370664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-59745-574-9_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-574-9_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-574-9_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-574-9_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-574-9_8'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59745-574-9_8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7a6b92f535e34bebacbaef8640cba248
4 schema:citation sg:pub.10.1038/30918
5 sg:pub.10.1186/1471-2105-7-180
6 https://doi.org/10.1002/prot.10069
7 https://doi.org/10.1002/prot.10534
8 https://doi.org/10.1002/prot.1173
9 https://doi.org/10.1002/prot.20739
10 https://doi.org/10.1002/prot.340180402
11 https://doi.org/10.1006/jmbi.1993.1332
12 https://doi.org/10.1016/j.jmb.2003.08.061
13 https://doi.org/10.1016/j.physa.2004.08.046
14 https://doi.org/10.1016/s0006-3495(04)74086-2
15 https://doi.org/10.1016/s0083-6729(00)58025-x
16 https://doi.org/10.1016/s1359-0278(97)00060-6
17 https://doi.org/10.1016/s1359-0278(98)00045-5
18 https://doi.org/10.1063/1.1358861
19 https://doi.org/10.1093/bioinformatics/18.suppl_1.s54
20 https://doi.org/10.1093/bioinformatics/18.suppl_1.s62
21 https://doi.org/10.1093/bioinformatics/bth913
22 https://doi.org/10.1093/bioinformatics/bti454
23 https://doi.org/10.1093/protein/12.1.15
24 https://doi.org/10.1093/protein/14.11.835
25 https://doi.org/10.1103/physreve.65.061910
26 https://doi.org/10.1103/physrevlett.92.218101
27 https://doi.org/10.1109/sffcs.1999.814624
28 https://doi.org/10.1126/science.286.5439.509
29 schema:datePublished 2008
30 schema:datePublishedReg 2008-01-01
31 schema:description Is there any reason why we should predict contact maps (CMs)? The question is one of the several ‘NP-hard’ questions that arise when striving for feasible solutions of the protein folding problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable problem was to predict a simplified version of the protein structure: a CM. In this chapter, we will clarify that whenever problems are difficult they remain at least as difficult in the process of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and useful representation of protein structures. These two-dimensional representations capture all the important features of a protein fold. We will review the general characteristics of CMs and the methods developed to study and predict them, and we will highlight some new ideas on how to improve CM predictions.
32 schema:editor N271c454c4a9d423a8c067807869a3f63
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N154b27bbc07c48d9a66e574f16631513
37 schema:name The Pros and Cons of Predicting Protein Contact Maps
38 schema:pagination 199-217
39 schema:productId N3e472e556f5a44b0973ebb50f1378dae
40 N7a2360ad83794002b91e11dafafec79f
41 Ne56dd6c891cf46e8b2a66d7105a66c57
42 schema:publisher N8373249075ff4360a4e2b1896cfef775
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032370664
44 https://doi.org/10.1007/978-1-59745-574-9_8
45 schema:sdDatePublished 2019-04-16T06:05
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N6c9edca9e9e34f27b4f74bbf580e2ad2
48 schema:url https://link.springer.com/10.1007%2F978-1-59745-574-9_8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0f57aeb7024c46f486d3ea5a8fa2f98d rdf:first sg:person.0764364505.45
53 rdf:rest N67b7723eee074e51a6eda8e32e42e260
54 N14ca370cbefe481e83057626d0697369 schema:familyName Zaki
55 schema:givenName Mohammed J.
56 rdf:type schema:Person
57 N154b27bbc07c48d9a66e574f16631513 schema:isbn 978-1-58829-752-5
58 978-1-59745-574-9
59 schema:name Protein Structure Prediction
60 rdf:type schema:Book
61 N271c454c4a9d423a8c067807869a3f63 rdf:first N14ca370cbefe481e83057626d0697369
62 rdf:rest N599e84c4c2d747399aa7d6d6873ab7ee
63 N3e472e556f5a44b0973ebb50f1378dae schema:name readcube_id
64 schema:value 9a35a5d7078aabe520ac74d636f5629a2a5087d7ad6ab9d3f273329f2d6ed292
65 rdf:type schema:PropertyValue
66 N599e84c4c2d747399aa7d6d6873ab7ee rdf:first N82847363c0e040a9acc80a082510eb48
67 rdf:rest rdf:nil
68 N67b7723eee074e51a6eda8e32e42e260 rdf:first sg:person.01347332413.06
69 rdf:rest Nc50aa23264b546eeacc5ecd164197589
70 N68a591f224c54e6c8fa7b54ebeaa1eb2 rdf:first sg:person.0675702613.15
71 rdf:rest rdf:nil
72 N6c9edca9e9e34f27b4f74bbf580e2ad2 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N7a2360ad83794002b91e11dafafec79f schema:name doi
75 schema:value 10.1007/978-1-59745-574-9_8
76 rdf:type schema:PropertyValue
77 N7a6b92f535e34bebacbaef8640cba248 rdf:first sg:person.01310344144.02
78 rdf:rest N0f57aeb7024c46f486d3ea5a8fa2f98d
79 N82847363c0e040a9acc80a082510eb48 schema:familyName Bystroff
80 schema:givenName Christopher
81 rdf:type schema:Person
82 N8373249075ff4360a4e2b1896cfef775 schema:location Totowa, NJ
83 schema:name Humana Press
84 rdf:type schema:Organisation
85 Nc50aa23264b546eeacc5ecd164197589 rdf:first sg:person.01235267744.04
86 rdf:rest N68a591f224c54e6c8fa7b54ebeaa1eb2
87 Ne56dd6c891cf46e8b2a66d7105a66c57 schema:name dimensions_id
88 schema:value pub.1032370664
89 rdf:type schema:PropertyValue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
94 schema:name Other Physical Sciences
95 rdf:type schema:DefinedTerm
96 sg:person.01235267744.04 schema:familyName Martelli
97 schema:givenName Pier Luigi
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235267744.04
99 rdf:type schema:Person
100 sg:person.01310344144.02 schema:familyName Bartoli
101 schema:givenName Lisa
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310344144.02
103 rdf:type schema:Person
104 sg:person.01347332413.06 schema:familyName Fariselli
105 schema:givenName Piero
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06
107 rdf:type schema:Person
108 sg:person.0675702613.15 schema:familyName Casadio
109 schema:givenName Rita
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15
111 rdf:type schema:Person
112 sg:person.0764364505.45 schema:familyName Capriotti
113 schema:givenName Emidio
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764364505.45
115 rdf:type schema:Person
116 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
117 https://doi.org/10.1038/30918
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/1471-2105-7-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023452944
120 https://doi.org/10.1186/1471-2105-7-180
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/prot.10069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031225888
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/prot.10534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047010063
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/prot.1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461989
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/prot.20739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011694362
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/prot.340180402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015585851
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jmbi.1993.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358555
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmb.2003.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036026326
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.physa.2004.08.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488980
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0006-3495(04)74086-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025278960
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0083-6729(00)58025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010317
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s1359-0278(97)00060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023928534
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1359-0278(98)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044301239
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.1358861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698667
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/bioinformatics/18.suppl_1.s54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053155506
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/bioinformatics/18.suppl_1.s62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043202263
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/bth913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046116987
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/bti454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004034549
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/protein/12.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034909061
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/protein/14.11.835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011422668
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.65.061910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728621
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.92.218101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818317
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/sffcs.1999.814624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095293918
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
167 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...