Sybil: Methods and Software for Multiple Genome Comparison and Visualization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Jonathan Crabtree , Samuel V. Angiuoli , Jennifer R. Wortman , Owen R. White

ABSTRACT

With the successful completion of genome sequencing projects for a variety of model organisms, the selection of candidate organisms for future sequencing efforts has been guided increasingly by a desire to enable comparative genomics. This trend has both depended on and encouraged the development of software tools that can elucidate and capitalize on the similarities and differences between genomes. “Sybil,” one such tool, is a primarily web-based software package whose primary goal is to facilitate the analysis and visualization of comparative genome data, with a particular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described. When combined, these two relatively simple techniques provide the user of the Sybil software (The Institute for Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his or her “input” genomes, showing which genes are conserved based on the parameters supplied to the protein clustering algorithm. For any given protein cluster the graphical display consists of a local alignment of the genomes in which the clustered genes are located. The genomes are arranged in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the same cluster, thus displaying conservation at the protein level in the context of the underlying genomic sequences. The authors have found this display—and slight variants thereof—useful for a variety of annotation and comparison tasks, ranging from identifying “missed” gene models or single-exon discrepancies between orthologous genes, to finding large or small regions of conserved gene synteny, and investigating the properties of the breakpoints between such regions. More... »

PAGES

93-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59745-547-3_6

DOI

http://dx.doi.org/10.1007/978-1-59745-547-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002756117

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18314579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute for Genomic Research, Rockville, MD", 
          "id": "http://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The Institute for Genomic Research, Rockville, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crabtree", 
        "givenName": "Jonathan", 
        "id": "sg:person.01064750006.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064750006.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute for Genomic Research, Rockville, MD", 
          "id": "http://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The Institute for Genomic Research, Rockville, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angiuoli", 
        "givenName": "Samuel V.", 
        "id": "sg:person.01343322453.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343322453.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute for Genomic Research, Rockville, MD", 
          "id": "http://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The Institute for Genomic Research, Rockville, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wortman", 
        "givenName": "Jennifer R.", 
        "id": "sg:person.0670072116.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670072116.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute for Genomic Research, Rockville, MD", 
          "id": "http://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The Institute for Genomic Research, Rockville, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Owen R.", 
        "id": "sg:person.01021555477.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021555477.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "With the successful completion of genome sequencing projects for a variety of model organisms, the selection of candidate organisms for future sequencing efforts has been guided increasingly by a desire to enable comparative genomics. This trend has both depended on and encouraged the development of software tools that can elucidate and capitalize on the similarities and differences between genomes. \u201cSybil,\u201d one such tool, is a primarily web-based software package whose primary goal is to facilitate the analysis and visualization of comparative genome data, with a particular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described. When combined, these two relatively simple techniques provide the user of the Sybil software (The Institute for Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his or her \u201cinput\u201d genomes, showing which genes are conserved based on the parameters supplied to the protein clustering algorithm. For any given protein cluster the graphical display consists of a local alignment of the genomes in which the clustered genes are located. The genomes are arranged in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the same cluster, thus displaying conservation at the protein level in the context of the underlying genomic sequences. The authors have found this display\u2014and slight variants thereof\u2014useful for a variety of annotation and comparison tasks, ranging from identifying \u201cmissed\u201d gene models or single-exon discrepancies between orthologous genes, to finding large or small regions of conserved gene synteny, and investigating the properties of the breakpoints between such regions.", 
    "editor": [
      {
        "familyName": "Ochs", 
        "givenName": "Michael F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59745-547-3_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-58829-734-1", 
        "978-1-59745-547-3"
      ], 
      "name": "Gene Function Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "protein clusters", 
      "clustering algorithm", 
      "future sequencing efforts", 
      "comparative genome data", 
      "genome sequencing projects", 
      "graphical display", 
      "multiple genome comparison", 
      "variety of annotations", 
      "web-based software package", 
      "gene synteny", 
      "orthologous genes", 
      "comparative genomics", 
      "model organisms", 
      "genome comparison", 
      "gene cluster", 
      "sequencing efforts", 
      "gene models", 
      "sequencing projects", 
      "genome data", 
      "genomic sequences", 
      "multiple genomes", 
      "candidate organism", 
      "genome", 
      "software tools", 
      "multiple alignment", 
      "genes", 
      "local alignment", 
      "such tools", 
      "protein levels", 
      "software package", 
      "Sybil", 
      "organisms", 
      "same cluster", 
      "protein", 
      "cluster data", 
      "algorithm", 
      "software", 
      "slight variant", 
      "synteny", 
      "visualization", 
      "genomics", 
      "display", 
      "users", 
      "conservation", 
      "annotation", 
      "tool", 
      "clusters", 
      "small region", 
      "such regions", 
      "sequence", 
      "task", 
      "primary goal", 
      "breakpoints", 
      "region", 
      "alignment", 
      "variety", 
      "variants", 
      "similarity", 
      "successful completion", 
      "comparison task", 
      "package", 
      "data", 
      "input", 
      "selection", 
      "method", 
      "stack", 
      "project", 
      "goal", 
      "analysis", 
      "particular emphasis", 
      "technique", 
      "context", 
      "simple technique", 
      "model", 
      "development", 
      "levels", 
      "efforts", 
      "Herein", 
      "differences", 
      "area", 
      "authors", 
      "parameters", 
      "comparison", 
      "trends", 
      "completion", 
      "emphasis", 
      "desire", 
      "properties", 
      "vertical stack", 
      "discrepancy"
    ], 
    "name": "Sybil: Methods and Software for Multiple Genome Comparison and Visualization", 
    "pagination": "93-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002756117"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59745-547-3_6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18314579"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59745-547-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1002756117"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_139.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-59745-547-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-547-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-547-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-547-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-547-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      123 URIs      116 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59745-547-3_6 schema:about N1002537da49c4832a7b9d5895ac888a7
2 N1e909f8f01194656b7beee7bcfaeef3a
3 N3effcfe922cf402d80babe7b2999a044
4 N70f2c233561c4d4592b2391eb8a8d066
5 Nb315bdeb964a4394920bdeb82847d9f2
6 Nb5d881f1dbe64293b2c5a728394626dc
7 Ne44f2099780a462aaae3f6651badb3dc
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N8d4805f14ea944f48d6150eb3fd8e8dc
11 schema:datePublished 2007
12 schema:datePublishedReg 2007-01-01
13 schema:description With the successful completion of genome sequencing projects for a variety of model organisms, the selection of candidate organisms for future sequencing efforts has been guided increasingly by a desire to enable comparative genomics. This trend has both depended on and encouraged the development of software tools that can elucidate and capitalize on the similarities and differences between genomes. “Sybil,” one such tool, is a primarily web-based software package whose primary goal is to facilitate the analysis and visualization of comparative genome data, with a particular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm, used to generate protein clusters suitable for analysis through Sybil and a method for creating graphical displays of protein or gene clusters that span multiple genomes are described. When combined, these two relatively simple techniques provide the user of the Sybil software (The Institute for Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his or her “input” genomes, showing which genes are conserved based on the parameters supplied to the protein clustering algorithm. For any given protein cluster the graphical display consists of a local alignment of the genomes in which the clustered genes are located. The genomes are arranged in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the same cluster, thus displaying conservation at the protein level in the context of the underlying genomic sequences. The authors have found this display—and slight variants thereof—useful for a variety of annotation and comparison tasks, ranging from identifying “missed” gene models or single-exon discrepancies between orthologous genes, to finding large or small regions of conserved gene synteny, and investigating the properties of the breakpoints between such regions.
14 schema:editor N74def4bfc25f42388c7272d543dc5609
15 schema:genre chapter
16 schema:isAccessibleForFree false
17 schema:isPartOf N4b60f8b2ab554bb7880a19ae0ef437a8
18 schema:keywords Herein
19 Sybil
20 algorithm
21 alignment
22 analysis
23 annotation
24 area
25 authors
26 breakpoints
27 candidate organism
28 cluster data
29 clustering algorithm
30 clusters
31 comparative genome data
32 comparative genomics
33 comparison
34 comparison task
35 completion
36 conservation
37 context
38 data
39 desire
40 development
41 differences
42 discrepancy
43 display
44 efforts
45 emphasis
46 future sequencing efforts
47 gene cluster
48 gene models
49 gene synteny
50 genes
51 genome
52 genome comparison
53 genome data
54 genome sequencing projects
55 genomic sequences
56 genomics
57 goal
58 graphical display
59 input
60 levels
61 local alignment
62 method
63 model
64 model organisms
65 multiple alignment
66 multiple genome comparison
67 multiple genomes
68 organisms
69 orthologous genes
70 package
71 parameters
72 particular emphasis
73 primary goal
74 project
75 properties
76 protein
77 protein clusters
78 protein levels
79 region
80 same cluster
81 selection
82 sequence
83 sequencing efforts
84 sequencing projects
85 similarity
86 simple technique
87 slight variant
88 small region
89 software
90 software package
91 software tools
92 stack
93 successful completion
94 such regions
95 such tools
96 synteny
97 task
98 technique
99 tool
100 trends
101 users
102 variants
103 variety
104 variety of annotations
105 vertical stack
106 visualization
107 web-based software package
108 schema:name Sybil: Methods and Software for Multiple Genome Comparison and Visualization
109 schema:pagination 93-108
110 schema:productId N1a16a43ab8d948a5807ae25da619d8ca
111 N1cca365efeed4968be24516c0abbb11a
112 Nd3ed004cd1e840ee94961b6feab0b7aa
113 schema:publisher Ncb068e51fce949aab91447ad5943520a
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756117
115 https://doi.org/10.1007/978-1-59745-547-3_6
116 schema:sdDatePublished 2022-08-04T17:14
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N570bcb223a5644438d23257f0d9a9227
119 schema:url https://doi.org/10.1007/978-1-59745-547-3_6
120 sgo:license sg:explorer/license/
121 sgo:sdDataset chapters
122 rdf:type schema:Chapter
123 N1002537da49c4832a7b9d5895ac888a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Cluster Analysis
125 rdf:type schema:DefinedTerm
126 N1a16a43ab8d948a5807ae25da619d8ca schema:name doi
127 schema:value 10.1007/978-1-59745-547-3_6
128 rdf:type schema:PropertyValue
129 N1cca365efeed4968be24516c0abbb11a schema:name pubmed_id
130 schema:value 18314579
131 rdf:type schema:PropertyValue
132 N1e909f8f01194656b7beee7bcfaeef3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Software
134 rdf:type schema:DefinedTerm
135 N25bd5be04970436d96274210afdf7e61 schema:familyName Ochs
136 schema:givenName Michael F.
137 rdf:type schema:Person
138 N3effcfe922cf402d80babe7b2999a044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Databases, Genetic
140 rdf:type schema:DefinedTerm
141 N4b60f8b2ab554bb7880a19ae0ef437a8 schema:isbn 978-1-58829-734-1
142 978-1-59745-547-3
143 schema:name Gene Function Analysis
144 rdf:type schema:Book
145 N570bcb223a5644438d23257f0d9a9227 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N70557e6f090e44de9fd9238c20518ce0 rdf:first sg:person.0670072116.14
148 rdf:rest Na98b934b5b3e480c84fe1344f4a5d18e
149 N70f2c233561c4d4592b2391eb8a8d066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Sequence Alignment
151 rdf:type schema:DefinedTerm
152 N74def4bfc25f42388c7272d543dc5609 rdf:first N25bd5be04970436d96274210afdf7e61
153 rdf:rest rdf:nil
154 N8d4805f14ea944f48d6150eb3fd8e8dc rdf:first sg:person.01064750006.82
155 rdf:rest Neac6eb255adf4c689bf173596e5b3bd7
156 Na98b934b5b3e480c84fe1344f4a5d18e rdf:first sg:person.01021555477.04
157 rdf:rest rdf:nil
158 Nb315bdeb964a4394920bdeb82847d9f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Proteins
160 rdf:type schema:DefinedTerm
161 Nb5d881f1dbe64293b2c5a728394626dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Algorithms
163 rdf:type schema:DefinedTerm
164 Ncb068e51fce949aab91447ad5943520a schema:name Springer Nature
165 rdf:type schema:Organisation
166 Nd3ed004cd1e840ee94961b6feab0b7aa schema:name dimensions_id
167 schema:value pub.1002756117
168 rdf:type schema:PropertyValue
169 Ne44f2099780a462aaae3f6651badb3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Genomics
171 rdf:type schema:DefinedTerm
172 Neac6eb255adf4c689bf173596e5b3bd7 rdf:first sg:person.01343322453.53
173 rdf:rest N70557e6f090e44de9fd9238c20518ce0
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
178 schema:name Genetics
179 rdf:type schema:DefinedTerm
180 sg:person.01021555477.04 schema:affiliation grid-institutes:grid.469946.0
181 schema:familyName White
182 schema:givenName Owen R.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021555477.04
184 rdf:type schema:Person
185 sg:person.01064750006.82 schema:affiliation grid-institutes:grid.469946.0
186 schema:familyName Crabtree
187 schema:givenName Jonathan
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064750006.82
189 rdf:type schema:Person
190 sg:person.01343322453.53 schema:affiliation grid-institutes:grid.469946.0
191 schema:familyName Angiuoli
192 schema:givenName Samuel V.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343322453.53
194 rdf:type schema:Person
195 sg:person.0670072116.14 schema:affiliation grid-institutes:grid.469946.0
196 schema:familyName Wortman
197 schema:givenName Jennifer R.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670072116.14
199 rdf:type schema:Person
200 grid-institutes:grid.469946.0 schema:alternateName The Institute for Genomic Research, Rockville, MD
201 schema:name The Institute for Genomic Research, Rockville, MD
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...