Magnetoencephalography (MEG) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Andreas A Ioannides

ABSTRACT

Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail. More... »

PAGES

167-188

Book

TITLE

Dynamic Brain Imaging

ISBN

978-1-934115-74-9
978-1-59745-543-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59745-543-5_8

DOI

http://dx.doi.org/10.1007/978-1-59745-543-5_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048834524

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18839092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Optical Coherence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Brain Science", 
          "id": "https://www.grid.ac/institutes/grid.474690.8", 
          "name": [
            "Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, Saitama, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "Andreas A", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/1073858406293696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1066168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007208123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011690977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2007.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013132416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.18531650702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014756709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1091-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01186914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016005395", 
          "https://doi.org/10.1007/bf01186914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01186914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016005395", 
          "https://doi.org/10.1007/bf01186914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(00)00560-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016047323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4522(03)00353-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017191986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4522(03)00353-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017191986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-5597(97)96681-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020671415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021285617", 
          "https://doi.org/10.1038/nature01484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021285617", 
          "https://doi.org/10.1038/nature01484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021946575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028107702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.24.11037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031785008", 
          "https://doi.org/10.1007/bf01234124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8760(84)90014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034118282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8760(84)90014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034118282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2000.0735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035518023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036769243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1995.7.6.1129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037415753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(02)00053-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041743911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/6/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045636136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045636136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510124103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048361016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/32/1/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/32/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/44/2/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059023630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0967-3334/14/2/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059121938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.4598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.759120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.558475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061229758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.161.3843.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062495150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005940103200304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005940103200304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060227"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.", 
    "editor": [
      {
        "familyName": "Hyder", 
        "givenName": "Fahmeed", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59745-543-5_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-934115-74-9", 
        "978-1-59745-543-5"
      ], 
      "name": "Dynamic Brain Imaging", 
      "type": "Book"
    }, 
    "name": "Magnetoencephalography (MEG)", 
    "pagination": "167-188", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59745-543-5_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8a36c119771339afb003be90b2ff8cbd2ceb34cde6e2a776c84a21c05c80766"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048834524"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18839092"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59745-543-5_8", 
      "https://app.dimensions.ai/details/publication/pub.1048834524"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77567_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-59745-543-5_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-543-5_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-543-5_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-543-5_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-543-5_8'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      23 PREDICATES      65 URIs      24 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59745-543-5_8 schema:about N0cc10097bf8c44868a52d4f44bf7fd5e
2 Nd8fa5d572da64eff9048a2f17ac0ad7f
3 Nfeee5e3a5a9541c9b6071cf2502e9017
4 anzsrc-for:11
5 anzsrc-for:1109
6 schema:author N013228f5912145eb93315ae8146df619
7 schema:citation sg:pub.10.1007/bf01186914
8 sg:pub.10.1007/bf01234124
9 sg:pub.10.1038/nature01484
10 https://doi.org/10.1002/andp.18531650702
11 https://doi.org/10.1002/hbm.10023
12 https://doi.org/10.1002/hbm.20102
13 https://doi.org/10.1006/nimg.2000.0735
14 https://doi.org/10.1016/0167-8760(84)90014-x
15 https://doi.org/10.1016/j.conb.2007.03.008
16 https://doi.org/10.1016/j.neuroimage.2004.06.023
17 https://doi.org/10.1016/j.neuroimage.2004.07.014
18 https://doi.org/10.1016/j.neuroimage.2006.09.023
19 https://doi.org/10.1016/s0168-5597(97)96681-8
20 https://doi.org/10.1016/s0306-4522(03)00353-1
21 https://doi.org/10.1016/s1053-8119(02)00053-8
22 https://doi.org/10.1016/s1053-8119(03)00367-7
23 https://doi.org/10.1016/s1388-2457(00)00560-5
24 https://doi.org/10.1073/pnas.0510124103
25 https://doi.org/10.1073/pnas.88.24.11037
26 https://doi.org/10.1088/0031-9155/32/1/003
27 https://doi.org/10.1088/0031-9155/32/1/004
28 https://doi.org/10.1088/0031-9155/44/2/010
29 https://doi.org/10.1088/0266-5611/6/4/005
30 https://doi.org/10.1088/0967-3334/14/2/003
31 https://doi.org/10.1103/revmodphys.65.413
32 https://doi.org/10.1109/10.4598
33 https://doi.org/10.1109/42.759120
34 https://doi.org/10.1109/78.558475
35 https://doi.org/10.1126/science.1066168
36 https://doi.org/10.1126/science.161.3843.784
37 https://doi.org/10.1162/neco.1995.7.6.1129
38 https://doi.org/10.1177/1073858406293696
39 https://doi.org/10.1177/155005940103200304
40 https://doi.org/10.1523/jneurosci.1091-05.2005
41 schema:datePublished 2009
42 schema:datePublishedReg 2009-01-01
43 schema:description Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.
44 schema:editor Na194ae0d34cd4042aa7279e939b2fc17
45 schema:genre chapter
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N6cee74b3c52c4c09b5705ad41c6e63ac
49 schema:name Magnetoencephalography (MEG)
50 schema:pagination 167-188
51 schema:productId N277f6d97ff2240dc90d4195a76b08f70
52 N3a4dfbc12ce348b58a29e13d8f808ee4
53 Nbc860d9f2ade464e87c8a25c915ee03d
54 Ncddd2bc1c14a434296e17cfeb15c58c9
55 schema:publisher N2c462f4ec71d4a5ba17e376fa59a2098
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048834524
57 https://doi.org/10.1007/978-1-59745-543-5_8
58 schema:sdDatePublished 2019-04-16T06:10
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N44eb3b184a174e00b91738f388c401e9
61 schema:url https://link.springer.com/10.1007%2F978-1-59745-543-5_8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N013228f5912145eb93315ae8146df619 rdf:first sg:person.0600434417.84
66 rdf:rest rdf:nil
67 N0bf528ffc2054f4f8cb6a5de171de052 schema:familyName Hyder
68 schema:givenName Fahmeed
69 rdf:type schema:Person
70 N0cc10097bf8c44868a52d4f44bf7fd5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N277f6d97ff2240dc90d4195a76b08f70 schema:name dimensions_id
74 schema:value pub.1048834524
75 rdf:type schema:PropertyValue
76 N2c462f4ec71d4a5ba17e376fa59a2098 schema:location Totowa, NJ
77 schema:name Humana Press
78 rdf:type schema:Organisation
79 N3a4dfbc12ce348b58a29e13d8f808ee4 schema:name pubmed_id
80 schema:value 18839092
81 rdf:type schema:PropertyValue
82 N44eb3b184a174e00b91738f388c401e9 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N6cee74b3c52c4c09b5705ad41c6e63ac schema:isbn 978-1-59745-543-5
85 978-1-934115-74-9
86 schema:name Dynamic Brain Imaging
87 rdf:type schema:Book
88 Na194ae0d34cd4042aa7279e939b2fc17 rdf:first N0bf528ffc2054f4f8cb6a5de171de052
89 rdf:rest rdf:nil
90 Nbc860d9f2ade464e87c8a25c915ee03d schema:name doi
91 schema:value 10.1007/978-1-59745-543-5_8
92 rdf:type schema:PropertyValue
93 Ncddd2bc1c14a434296e17cfeb15c58c9 schema:name readcube_id
94 schema:value e8a36c119771339afb003be90b2ff8cbd2ceb34cde6e2a776c84a21c05c80766
95 rdf:type schema:PropertyValue
96 Nd8fa5d572da64eff9048a2f17ac0ad7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Tomography, Optical Coherence
98 rdf:type schema:DefinedTerm
99 Nfeee5e3a5a9541c9b6071cf2502e9017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Magnetoencephalography
101 rdf:type schema:DefinedTerm
102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
103 schema:name Medical and Health Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
106 schema:name Neurosciences
107 rdf:type schema:DefinedTerm
108 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.474690.8
109 schema:familyName Ioannides
110 schema:givenName Andreas A
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
112 rdf:type schema:Person
113 sg:pub.10.1007/bf01186914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016005395
114 https://doi.org/10.1007/bf01186914
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01234124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031785008
117 https://doi.org/10.1007/bf01234124
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature01484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021285617
120 https://doi.org/10.1038/nature01484
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/andp.18531650702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014756709
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/hbm.10023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021946575
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/hbm.20102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036769243
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/nimg.2000.0735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035518023
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0167-8760(84)90014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034118282
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.conb.2007.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013132416
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.neuroimage.2004.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706602
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.neuroimage.2004.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011690977
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.neuroimage.2006.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028107702
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0168-5597(97)96681-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020671415
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0306-4522(03)00353-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017191986
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1053-8119(02)00053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041743911
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s1053-8119(03)00367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045636136
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1388-2457(00)00560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016047323
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1073/pnas.0510124103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048361016
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.88.24.11037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262059
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0031-9155/32/1/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021496
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/0031-9155/32/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021497
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0031-9155/44/2/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059023630
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0266-5611/6/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998952
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0967-3334/14/2/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121938
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/revmodphys.65.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839289
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/10.4598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084723
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/42.759120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170758
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/78.558475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061229758
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1066168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007208123
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.161.3843.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062495150
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1162/neco.1995.7.6.1129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037415753
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1177/1073858406293696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919041
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1177/155005940103200304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064060227
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1523/jneurosci.1091-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109357
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.474690.8 schema:alternateName RIKEN Center for Brain Science
185 schema:name Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, Saitama, Japan.
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...