The Extracellular Matrix and VEGF Processing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

Sunyoung Lee , M. Luisa Iruela-Arispe

ABSTRACT

Tumor neovascularization requires the activation of a subset of endothelial cells from normal vascular beds, the digestion of the underlying basement membrane, and the directional migration of these cells toward an avascular site. The contribution of vascular endothelial growth factor (VEGF) to each one of these steps has received large experimental support, and it has been demonstrated that pharmacological and/or genetic inactivation of this growth factor can impact the angiogenic response and consequently suppress tumor growth. Thus, understanding the mechanisms that control VEGF levels has become an important focus of investigation. Today, we have a fairly comprehensive understanding of the mechanisms that regulate VEGF transcriptional rate and half-life. In contrast, little emphasis has been placed on the regulation of VEGF biology post-secretion. In this chapter, we focus our attention on the question of how VEGF becomes released from the extracellular environment and contributes to tumor neovascularization. We discuss this point in the larger context of matrix interaction with growth factors and their modulation by matrix metalloproteinases (MMPs). More... »

PAGES

85-97

Book

TITLE

Antiangiogenic Agents in Cancer Therapy

ISBN

978-1-58829-870-6
978-1-59745-184-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59745-184-0_5

DOI

http://dx.doi.org/10.1007/978-1-59745-184-0_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021216751


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Lee", 
        "givenName": "Sunyoung", 
        "id": "sg:person.013124424447.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124424447.01"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Iruela-Arispe", 
        "givenName": "M. Luisa", 
        "id": "sg:person.012267523157.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267523157.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Tumor neovascularization requires the activation of a subset of endothelial cells from normal vascular beds, the digestion of the underlying basement membrane, and the directional migration of these cells toward an avascular site. The contribution of vascular endothelial growth factor (VEGF) to each one of these steps has received large experimental support, and it has been demonstrated that pharmacological and/or genetic inactivation of this growth factor can impact the angiogenic response and consequently suppress tumor growth. Thus, understanding the mechanisms that control VEGF levels has become an important focus of investigation. Today, we have a fairly comprehensive understanding of the mechanisms that regulate VEGF transcriptional rate and half-life. In contrast, little emphasis has been placed on the regulation of VEGF biology post-secretion. In this chapter, we focus our attention on the question of how VEGF becomes released from the extracellular environment and contributes to tumor neovascularization. We discuss this point in the larger context of matrix interaction with growth factors and their modulation by matrix metalloproteinases (MMPs).", 
    "editor": [
      {
        "familyName": "Teicher", 
        "givenName": "Beverly A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ellis", 
        "givenName": "Lee M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59745-184-0_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-58829-870-6", 
        "978-1-59745-184-0"
      ], 
      "name": "Antiangiogenic Agents in Cancer Therapy", 
      "type": "Book"
    }, 
    "keywords": [
      "growth factor", 
      "vascular endothelial growth factor", 
      "extracellular environment", 
      "transcriptional rate", 
      "genetic inactivation", 
      "matrix metalloproteinases", 
      "VEGF biology", 
      "matrix interactions", 
      "directional migration", 
      "extracellular matrix", 
      "suppress tumor growth", 
      "angiogenic response", 
      "tumor neovascularization", 
      "endothelial cells", 
      "endothelial growth factor", 
      "tumor growth", 
      "experimental support", 
      "basement membrane", 
      "cells", 
      "comprehensive understanding", 
      "avascular site", 
      "biology", 
      "regulation", 
      "mechanism", 
      "inactivation", 
      "membrane", 
      "digestion", 
      "activation", 
      "metalloproteinases", 
      "growth", 
      "migration", 
      "sites", 
      "normal vascular bed", 
      "factors", 
      "interaction", 
      "important focus", 
      "modulation", 
      "understanding", 
      "response", 
      "contrast", 
      "neovascularization", 
      "subset", 
      "levels", 
      "environment", 
      "step", 
      "chapter", 
      "little emphasis", 
      "matrix", 
      "contribution", 
      "vascular bed", 
      "VEGF levels", 
      "rate", 
      "investigation", 
      "larger context", 
      "focus", 
      "questions", 
      "emphasis", 
      "processing", 
      "context", 
      "bed", 
      "today", 
      "attention", 
      "point", 
      "support"
    ], 
    "name": "The Extracellular Matrix and VEGF Processing", 
    "pagination": "85-97", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021216751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59745-184-0_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59745-184-0_5", 
      "https://app.dimensions.ai/details/publication/pub.1021216751"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_450.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-59745-184-0_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-184-0_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-184-0_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-184-0_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59745-184-0_5'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59745-184-0_5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na8edb60517af4c3786854ce4f3bac066
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description Tumor neovascularization requires the activation of a subset of endothelial cells from normal vascular beds, the digestion of the underlying basement membrane, and the directional migration of these cells toward an avascular site. The contribution of vascular endothelial growth factor (VEGF) to each one of these steps has received large experimental support, and it has been demonstrated that pharmacological and/or genetic inactivation of this growth factor can impact the angiogenic response and consequently suppress tumor growth. Thus, understanding the mechanisms that control VEGF levels has become an important focus of investigation. Today, we have a fairly comprehensive understanding of the mechanisms that regulate VEGF transcriptional rate and half-life. In contrast, little emphasis has been placed on the regulation of VEGF biology post-secretion. In this chapter, we focus our attention on the question of how VEGF becomes released from the extracellular environment and contributes to tumor neovascularization. We discuss this point in the larger context of matrix interaction with growth factors and their modulation by matrix metalloproteinases (MMPs).
7 schema:editor N17e86bad27c841cba1c9477e16cb1bda
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N04e07be8115948a585ac38c27c6d9a01
11 schema:keywords VEGF biology
12 VEGF levels
13 activation
14 angiogenic response
15 attention
16 avascular site
17 basement membrane
18 bed
19 biology
20 cells
21 chapter
22 comprehensive understanding
23 context
24 contrast
25 contribution
26 digestion
27 directional migration
28 emphasis
29 endothelial cells
30 endothelial growth factor
31 environment
32 experimental support
33 extracellular environment
34 extracellular matrix
35 factors
36 focus
37 genetic inactivation
38 growth
39 growth factor
40 important focus
41 inactivation
42 interaction
43 investigation
44 larger context
45 levels
46 little emphasis
47 matrix
48 matrix interactions
49 matrix metalloproteinases
50 mechanism
51 membrane
52 metalloproteinases
53 migration
54 modulation
55 neovascularization
56 normal vascular bed
57 point
58 processing
59 questions
60 rate
61 regulation
62 response
63 sites
64 step
65 subset
66 support
67 suppress tumor growth
68 today
69 transcriptional rate
70 tumor growth
71 tumor neovascularization
72 understanding
73 vascular bed
74 vascular endothelial growth factor
75 schema:name The Extracellular Matrix and VEGF Processing
76 schema:pagination 85-97
77 schema:productId N4e9a9114f1a949fc91adc5ac716232b9
78 N50f682f40256472dafc86ee44ac98d7a
79 schema:publisher N83a5bbdb2cb447698239013ac1d0b159
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021216751
81 https://doi.org/10.1007/978-1-59745-184-0_5
82 schema:sdDatePublished 2022-10-01T06:59
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N5aea6d02aac34b7486bc2b5352afd2e2
85 schema:url https://doi.org/10.1007/978-1-59745-184-0_5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N04e07be8115948a585ac38c27c6d9a01 schema:isbn 978-1-58829-870-6
90 978-1-59745-184-0
91 schema:name Antiangiogenic Agents in Cancer Therapy
92 rdf:type schema:Book
93 N17e86bad27c841cba1c9477e16cb1bda rdf:first N2b2cfcabba5d4e90855201072b6bb458
94 rdf:rest N39a5b26c289f4fd0880b6eb00fdc9b78
95 N2b2cfcabba5d4e90855201072b6bb458 schema:familyName Teicher
96 schema:givenName Beverly A.
97 rdf:type schema:Person
98 N30ed78e086c64bd4a8f8ab9d47ea460a rdf:first sg:person.012267523157.16
99 rdf:rest rdf:nil
100 N39a5b26c289f4fd0880b6eb00fdc9b78 rdf:first Ne8acc07b4d1b4956bc0fefe7aba165f7
101 rdf:rest rdf:nil
102 N4e9a9114f1a949fc91adc5ac716232b9 schema:name doi
103 schema:value 10.1007/978-1-59745-184-0_5
104 rdf:type schema:PropertyValue
105 N50f682f40256472dafc86ee44ac98d7a schema:name dimensions_id
106 schema:value pub.1021216751
107 rdf:type schema:PropertyValue
108 N5aea6d02aac34b7486bc2b5352afd2e2 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N83a5bbdb2cb447698239013ac1d0b159 schema:name Springer Nature
111 rdf:type schema:Organisation
112 Na8edb60517af4c3786854ce4f3bac066 rdf:first sg:person.013124424447.01
113 rdf:rest N30ed78e086c64bd4a8f8ab9d47ea460a
114 Ne8acc07b4d1b4956bc0fefe7aba165f7 schema:familyName Ellis
115 schema:givenName Lee M.
116 rdf:type schema:Person
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 sg:person.012267523157.16 schema:familyName Iruela-Arispe
124 schema:givenName M. Luisa
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267523157.16
126 rdf:type schema:Person
127 sg:person.013124424447.01 schema:familyName Lee
128 schema:givenName Sunyoung
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124424447.01
130 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...