2004
AUTHORSW. Michael Ainley , Siva P. Kumpatla
ABSTRACTPlants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant’s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this “junk” deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off. More... »
PAGES243-262
The GMO Handbook
ISBN
978-1-61737-482-1
978-1-59259-801-4
http://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9
DOIhttp://dx.doi.org/10.1007/978-1-59259-801-4_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019455633
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Plant Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"familyName": "Ainley",
"givenName": "W. Michael",
"id": "sg:person.0667056024.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667056024.14"
],
"type": "Person"
},
{
"familyName": "Kumpatla",
"givenName": "Siva P.",
"id": "sg:person.01032130304.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130304.58"
],
"type": "Person"
}
],
"datePublished": "2004",
"datePublishedReg": "2004-01-01",
"description": "Plants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant\u2019s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this \u201cjunk\u201d deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off.",
"editor": [
{
"familyName": "Parekh",
"givenName": "Sarad R.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-59259-801-4_9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-61737-482-1",
"978-1-59259-801-4"
],
"name": "The GMO Handbook",
"type": "Book"
},
"keywords": [
"gene silencing",
"integration of transgenes",
"gene of interest",
"deoxyribonucleic acid",
"mobile genetic elements",
"plant genomes",
"transgenic events",
"repetitive elements",
"genetic elements",
"surveillance mechanism",
"genomic damage",
"genome",
"agricultural biotechnology",
"plants",
"expression of virus",
"silencing",
"genes",
"expression",
"retroelements",
"transposon",
"viral infection",
"mechanism",
"transgene",
"biotechnology",
"junk",
"invasion",
"proliferation",
"virus",
"acid",
"elements",
"damage",
"events",
"infection",
"generation",
"progress",
"interest",
"integration",
"phenomenon"
],
"name": "Gene Silencing in Plants",
"pagination": "243-262",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019455633"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-59259-801-4_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-59259-801-4_9",
"https://app.dimensions.ai/details/publication/pub.1019455633"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_285.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-59259-801-4_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'
This table displays all metadata directly associated to this object as RDF triples.
104 TRIPLES
23 PREDICATES
65 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-59259-801-4_9 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | ″ | anzsrc-for:0607 |
4 | ″ | schema:author | N304ea65451834908bb83f141dc851372 |
5 | ″ | schema:datePublished | 2004 |
6 | ″ | schema:datePublishedReg | 2004-01-01 |
7 | ″ | schema:description | Plants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant’s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this “junk” deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off. |
8 | ″ | schema:editor | Nbbd9a03c4d734d91ac958ac7cf34fefa |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N3795b6f60c3940239d553f6b4069eacc |
13 | ″ | schema:keywords | acid |
14 | ″ | ″ | agricultural biotechnology |
15 | ″ | ″ | biotechnology |
16 | ″ | ″ | damage |
17 | ″ | ″ | deoxyribonucleic acid |
18 | ″ | ″ | elements |
19 | ″ | ″ | events |
20 | ″ | ″ | expression |
21 | ″ | ″ | expression of virus |
22 | ″ | ″ | gene of interest |
23 | ″ | ″ | gene silencing |
24 | ″ | ″ | generation |
25 | ″ | ″ | genes |
26 | ″ | ″ | genetic elements |
27 | ″ | ″ | genome |
28 | ″ | ″ | genomic damage |
29 | ″ | ″ | infection |
30 | ″ | ″ | integration |
31 | ″ | ″ | integration of transgenes |
32 | ″ | ″ | interest |
33 | ″ | ″ | invasion |
34 | ″ | ″ | junk |
35 | ″ | ″ | mechanism |
36 | ″ | ″ | mobile genetic elements |
37 | ″ | ″ | phenomenon |
38 | ″ | ″ | plant genomes |
39 | ″ | ″ | plants |
40 | ″ | ″ | progress |
41 | ″ | ″ | proliferation |
42 | ″ | ″ | repetitive elements |
43 | ″ | ″ | retroelements |
44 | ″ | ″ | silencing |
45 | ″ | ″ | surveillance mechanism |
46 | ″ | ″ | transgene |
47 | ″ | ″ | transgenic events |
48 | ″ | ″ | transposon |
49 | ″ | ″ | viral infection |
50 | ″ | ″ | virus |
51 | ″ | schema:name | Gene Silencing in Plants |
52 | ″ | schema:pagination | 243-262 |
53 | ″ | schema:productId | N701cd1deab2c4518ab05df9eaef61290 |
54 | ″ | ″ | Nb9cbb0f5b65e4df9bb8558122382bb0a |
55 | ″ | schema:publisher | N5dbc7f06587b4a66a157ebdf00d0e9a9 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019455633 |
57 | ″ | ″ | https://doi.org/10.1007/978-1-59259-801-4_9 |
58 | ″ | schema:sdDatePublished | 2022-06-01T22:31 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | Ne80bdeb6e5e94101834dcffacab9371f |
61 | ″ | schema:url | https://doi.org/10.1007/978-1-59259-801-4_9 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N304ea65451834908bb83f141dc851372 | rdf:first | sg:person.0667056024.14 |
66 | ″ | rdf:rest | N734b6cb377174d029a28b4fa5728bc29 |
67 | N3795b6f60c3940239d553f6b4069eacc | schema:isbn | 978-1-59259-801-4 |
68 | ″ | ″ | 978-1-61737-482-1 |
69 | ″ | schema:name | The GMO Handbook |
70 | ″ | rdf:type | schema:Book |
71 | N5dbc7f06587b4a66a157ebdf00d0e9a9 | schema:name | Springer Nature |
72 | ″ | rdf:type | schema:Organisation |
73 | N701cd1deab2c4518ab05df9eaef61290 | schema:name | doi |
74 | ″ | schema:value | 10.1007/978-1-59259-801-4_9 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N734b6cb377174d029a28b4fa5728bc29 | rdf:first | sg:person.01032130304.58 |
77 | ″ | rdf:rest | rdf:nil |
78 | N8ea10e22d99c41e488627d6008e52f69 | schema:familyName | Parekh |
79 | ″ | schema:givenName | Sarad R. |
80 | ″ | rdf:type | schema:Person |
81 | Nb9cbb0f5b65e4df9bb8558122382bb0a | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1019455633 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | Nbbd9a03c4d734d91ac958ac7cf34fefa | rdf:first | N8ea10e22d99c41e488627d6008e52f69 |
85 | ″ | rdf:rest | rdf:nil |
86 | Ne80bdeb6e5e94101834dcffacab9371f | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Biological Sciences |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Genetics |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0607 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Plant Biology |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:person.01032130304.58 | schema:familyName | Kumpatla |
98 | ″ | schema:givenName | Siva P. |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130304.58 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.0667056024.14 | schema:familyName | Ainley |
102 | ″ | schema:givenName | W. Michael |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667056024.14 |
104 | ″ | rdf:type | schema:Person |