Gene Silencing in Plants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

W. Michael Ainley , Siva P. Kumpatla

ABSTRACT

Plants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant’s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this “junk” deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off. More... »

PAGES

243-262

Book

TITLE

The GMO Handbook

ISBN

978-1-61737-482-1
978-1-59259-801-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9

DOI

http://dx.doi.org/10.1007/978-1-59259-801-4_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019455633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ainley", 
        "givenName": "W. Michael", 
        "id": "sg:person.0667056024.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667056024.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kumpatla", 
        "givenName": "Siva P.", 
        "id": "sg:person.01032130304.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130304.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Plants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant\u2019s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this \u201cjunk\u201d deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off.", 
    "editor": [
      {
        "familyName": "Parekh", 
        "givenName": "Sarad R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59259-801-4_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-61737-482-1", 
        "978-1-59259-801-4"
      ], 
      "name": "The GMO Handbook", 
      "type": "Book"
    }, 
    "keywords": [
      "gene silencing", 
      "gene of interest", 
      "integration of transgenes", 
      "deoxyribonucleic acid", 
      "mobile genetic elements", 
      "plant genomes", 
      "transgenic events", 
      "repetitive elements", 
      "genetic elements", 
      "surveillance mechanism", 
      "genomic damage", 
      "agricultural biotechnology", 
      "expression of virus", 
      "genome", 
      "plants", 
      "silencing", 
      "genes", 
      "expression", 
      "retroelements", 
      "transposon", 
      "viral infection", 
      "transgene", 
      "mechanism", 
      "biotechnology", 
      "junk", 
      "invasion", 
      "proliferation", 
      "virus", 
      "acid", 
      "elements", 
      "damage", 
      "events", 
      "infection", 
      "generation", 
      "progress", 
      "interest", 
      "integration", 
      "phenomenon"
    ], 
    "name": "Gene Silencing in Plants", 
    "pagination": "243-262", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019455633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59259-801-4_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59259-801-4_9", 
      "https://app.dimensions.ai/details/publication/pub.1019455633"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_305.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-59259-801-4_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-801-4_9'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      22 PREDICATES      64 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59259-801-4_9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 anzsrc-for:0607
4 schema:author Na088cc0f876947bbbe3a3b24cdc8ce87
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description Plants have evolved mechanisms to limit viral infections and genomic damage that can occur by the invasion, proliferation, and expression of viruses and mobile genetic elements such as retroelements and transposons (1). Up to 95% of a plant’s genome is comprised of repetitive elements. The mechanisms involved with limiting expression of this “junk” deoxyribonucleic acid (DNA) have significantly hindered progress in agricultural biotechnology because DNA carrying genes of interest is often subjected to the same protective surveillance mechanisms and their expression shut down. This phenomenon, known as gene silencing, can occur immediately following integration of transgenes or over several generations. Gene silencing can affect some or all plants derived from a transgenic event, and expression can be partially or fully turned off.
8 schema:editor Ne5dd26607a7c41aebaed04282a7c2b21
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N0968cb8d786a405aa86a92b0ded27de5
12 schema:keywords acid
13 agricultural biotechnology
14 biotechnology
15 damage
16 deoxyribonucleic acid
17 elements
18 events
19 expression
20 expression of virus
21 gene of interest
22 gene silencing
23 generation
24 genes
25 genetic elements
26 genome
27 genomic damage
28 infection
29 integration
30 integration of transgenes
31 interest
32 invasion
33 junk
34 mechanism
35 mobile genetic elements
36 phenomenon
37 plant genomes
38 plants
39 progress
40 proliferation
41 repetitive elements
42 retroelements
43 silencing
44 surveillance mechanism
45 transgene
46 transgenic events
47 transposon
48 viral infection
49 virus
50 schema:name Gene Silencing in Plants
51 schema:pagination 243-262
52 schema:productId Nd3a3ae4297ea4369a5666013a6f25630
53 Nfecb4a9634d8433b8972e39404ed3c2e
54 schema:publisher Ne992544e8c554baba8267fe442c06b1b
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019455633
56 https://doi.org/10.1007/978-1-59259-801-4_9
57 schema:sdDatePublished 2022-08-04T17:18
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nc3d8fe94cb7f43b493a3f0bc877c23b8
60 schema:url https://doi.org/10.1007/978-1-59259-801-4_9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0968cb8d786a405aa86a92b0ded27de5 schema:isbn 978-1-59259-801-4
65 978-1-61737-482-1
66 schema:name The GMO Handbook
67 rdf:type schema:Book
68 N4f0769fff301485cb2c64346914dc3e5 rdf:first sg:person.01032130304.58
69 rdf:rest rdf:nil
70 Na088cc0f876947bbbe3a3b24cdc8ce87 rdf:first sg:person.0667056024.14
71 rdf:rest N4f0769fff301485cb2c64346914dc3e5
72 Nc3d8fe94cb7f43b493a3f0bc877c23b8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nd3a3ae4297ea4369a5666013a6f25630 schema:name doi
75 schema:value 10.1007/978-1-59259-801-4_9
76 rdf:type schema:PropertyValue
77 Ne5dd26607a7c41aebaed04282a7c2b21 rdf:first Ne5e6118f49f14b819cca661920d4c197
78 rdf:rest rdf:nil
79 Ne5e6118f49f14b819cca661920d4c197 schema:familyName Parekh
80 schema:givenName Sarad R.
81 rdf:type schema:Person
82 Ne992544e8c554baba8267fe442c06b1b schema:name Springer Nature
83 rdf:type schema:Organisation
84 Nfecb4a9634d8433b8972e39404ed3c2e schema:name dimensions_id
85 schema:value pub.1019455633
86 rdf:type schema:PropertyValue
87 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
88 schema:name Biological Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
91 schema:name Genetics
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
94 schema:name Plant Biology
95 rdf:type schema:DefinedTerm
96 sg:person.01032130304.58 schema:familyName Kumpatla
97 schema:givenName Siva P.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130304.58
99 rdf:type schema:Person
100 sg:person.0667056024.14 schema:familyName Ainley
101 schema:givenName W. Michael
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667056024.14
103 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...