Management of Murine Lupus by Correction of Fas and Fas Ligand-Induced Apoptosis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Hui-Chen Hsu , Huang-Ge Zhang , Tong Zhou , John D. Mountz

ABSTRACT

Identification of mutations of fas and fas ligand (fasL) genes in murine models of autoimmune disease has provided an important experimental tool for the analysis of tolerance and autoimmune disease. Mutations of fasL and fas genes are not a common cause of autoimmune disease in humans, although a mutation of the fas gene has been associated with autoimmune lymphoproliferative syndrome (1–5), and we have described a mutation of the fasL gene in one patient with SLE (6). Furthermore, accumulating evidence suggests that dysregulation of apoptosis or altered levels of expression of FasL and Fas plays an important role in the pathogenesis of diseases associated with immune regulation (6–11). Fas apoptosis appears to be the primary mechanism for elimination of autoreactive T cells outside the thymus. FasL regulation is tightly controlled, and specific cells and transcription factors have been identified that play a role in this process. Further investigations of Fas/FasL regulation should allow development of strategies to restore T-cell tolerance in autoimmune situations. The first part of this chapter uses Fas/FasL as an example to demonstrate the importance of apoptosis in the regulation of immune homeostasis. The second part of this chapter follows the footsteps of investigators in this field to understand how one can apply modern technology to understand mechanisms associated with genetic defect-related autoimmune disease and to develop strategies to overcome these defects. More... »

PAGES

671-693

Book

TITLE

Lupus

ISBN

978-1-4757-5686-9
978-1-59259-703-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-59259-703-1_40

DOI

http://dx.doi.org/10.1007/978-1-59259-703-1_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038580972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hsu", 
        "givenName": "Hui-Chen", 
        "id": "sg:person.01263522210.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263522210.53"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Huang-Ge", 
        "id": "sg:person.01054374560.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054374560.30"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Tong", 
        "id": "sg:person.0664616100.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Mountz", 
        "givenName": "John D.", 
        "id": "sg:person.07550405624.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550405624.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Identification of mutations of fas and fas ligand (fasL) genes in murine models of autoimmune disease has provided an important experimental tool for the analysis of tolerance and autoimmune disease. Mutations of fasL and fas genes are not a common cause of autoimmune disease in humans, although a mutation of the fas gene has been associated with autoimmune lymphoproliferative syndrome (1\u20135), and we have described a mutation of the fasL gene in one patient with SLE (6). Furthermore, accumulating evidence suggests that dysregulation of apoptosis or altered levels of expression of FasL and Fas plays an important role in the pathogenesis of diseases associated with immune regulation (6\u201311). Fas apoptosis appears to be the primary mechanism for elimination of autoreactive T cells outside the thymus. FasL regulation is tightly controlled, and specific cells and transcription factors have been identified that play a role in this process. Further investigations of Fas/FasL regulation should allow development of strategies to restore T-cell tolerance in autoimmune situations. The first part of this chapter uses Fas/FasL as an example to demonstrate the importance of apoptosis in the regulation of immune homeostasis. The second part of this chapter follows the footsteps of investigators in this field to understand how one can apply modern technology to understand mechanisms associated with genetic defect-related autoimmune disease and to develop strategies to overcome these defects.", 
    "editor": [
      {
        "familyName": "Kammer", 
        "givenName": "Gary M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tsokos", 
        "givenName": "George C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-59259-703-1_40", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-5686-9", 
        "978-1-59259-703-1"
      ], 
      "name": "Lupus", 
      "type": "Book"
    }, 
    "keywords": [
      "FA genes", 
      "FasL regulation", 
      "Correction of Fas", 
      "Fas ligand gene", 
      "identification of mutations", 
      "dysregulation of apoptosis", 
      "importance of apoptosis", 
      "transcription factors", 
      "level of expression", 
      "genes", 
      "Fas/FasL", 
      "ligand gene", 
      "pathogenesis of disease", 
      "autoimmune lymphoproliferative syndrome", 
      "important experimental tool", 
      "FasL gene", 
      "mutations", 
      "apoptosis", 
      "regulation", 
      "specific cells", 
      "Fas ligand", 
      "FasL", 
      "FA", 
      "development of strategies", 
      "analysis of tolerance", 
      "experimental tool", 
      "autoimmune diseases", 
      "immune homeostasis", 
      "primary mechanism", 
      "lymphoproliferative syndrome", 
      "important role", 
      "cells", 
      "immune regulation", 
      "cell tolerance", 
      "tolerance", 
      "homeostasis", 
      "mechanism", 
      "role", 
      "expression", 
      "autoimmune situations", 
      "dysregulation", 
      "murine model", 
      "murine lupus", 
      "common cause", 
      "identification", 
      "further investigation", 
      "humans", 
      "disease", 
      "thymus", 
      "defects", 
      "pathogenesis", 
      "ligands", 
      "development", 
      "strategies", 
      "part", 
      "chapter", 
      "importance", 
      "evidence", 
      "levels", 
      "factors", 
      "patients", 
      "lupus", 
      "SLE", 
      "syndrome", 
      "analysis", 
      "process", 
      "cause", 
      "tool", 
      "investigators", 
      "elimination", 
      "management", 
      "investigation", 
      "example", 
      "modern technology", 
      "model", 
      "technology", 
      "field", 
      "correction", 
      "first part", 
      "situation", 
      "second part", 
      "footsteps", 
      "Mutations of fasL", 
      "Fas/FasL regulation", 
      "footsteps of investigators", 
      "genetic defect-related autoimmune disease", 
      "defect-related autoimmune disease"
    ], 
    "name": "Management of Murine Lupus by Correction of Fas and Fas Ligand-Induced Apoptosis", 
    "pagination": "671-693", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038580972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-59259-703-1_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-59259-703-1_40", 
      "https://app.dimensions.ai/details/publication/pub.1038580972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_28.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-59259-703-1_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-703-1_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-703-1_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-703-1_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-59259-703-1_40'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      23 PREDICATES      114 URIs      105 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-59259-703-1_40 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 anzsrc-for:11
4 anzsrc-for:1107
5 schema:author Ndbe7bdbfd0b64399867ebe140e722303
6 schema:datePublished 1999
7 schema:datePublishedReg 1999-01-01
8 schema:description Identification of mutations of fas and fas ligand (fasL) genes in murine models of autoimmune disease has provided an important experimental tool for the analysis of tolerance and autoimmune disease. Mutations of fasL and fas genes are not a common cause of autoimmune disease in humans, although a mutation of the fas gene has been associated with autoimmune lymphoproliferative syndrome (1–5), and we have described a mutation of the fasL gene in one patient with SLE (6). Furthermore, accumulating evidence suggests that dysregulation of apoptosis or altered levels of expression of FasL and Fas plays an important role in the pathogenesis of diseases associated with immune regulation (6–11). Fas apoptosis appears to be the primary mechanism for elimination of autoreactive T cells outside the thymus. FasL regulation is tightly controlled, and specific cells and transcription factors have been identified that play a role in this process. Further investigations of Fas/FasL regulation should allow development of strategies to restore T-cell tolerance in autoimmune situations. The first part of this chapter uses Fas/FasL as an example to demonstrate the importance of apoptosis in the regulation of immune homeostasis. The second part of this chapter follows the footsteps of investigators in this field to understand how one can apply modern technology to understand mechanisms associated with genetic defect-related autoimmune disease and to develop strategies to overcome these defects.
9 schema:editor Ndb1642e1ec244c6a9a86d363b9fa79bb
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N9e73bf16eab043409feaf85497c34e2a
14 schema:keywords Correction of Fas
15 FA
16 FA genes
17 Fas ligand
18 Fas ligand gene
19 Fas/FasL
20 Fas/FasL regulation
21 FasL
22 FasL gene
23 FasL regulation
24 Mutations of fasL
25 SLE
26 analysis
27 analysis of tolerance
28 apoptosis
29 autoimmune diseases
30 autoimmune lymphoproliferative syndrome
31 autoimmune situations
32 cause
33 cell tolerance
34 cells
35 chapter
36 common cause
37 correction
38 defect-related autoimmune disease
39 defects
40 development
41 development of strategies
42 disease
43 dysregulation
44 dysregulation of apoptosis
45 elimination
46 evidence
47 example
48 experimental tool
49 expression
50 factors
51 field
52 first part
53 footsteps
54 footsteps of investigators
55 further investigation
56 genes
57 genetic defect-related autoimmune disease
58 homeostasis
59 humans
60 identification
61 identification of mutations
62 immune homeostasis
63 immune regulation
64 importance
65 importance of apoptosis
66 important experimental tool
67 important role
68 investigation
69 investigators
70 level of expression
71 levels
72 ligand gene
73 ligands
74 lupus
75 lymphoproliferative syndrome
76 management
77 mechanism
78 model
79 modern technology
80 murine lupus
81 murine model
82 mutations
83 part
84 pathogenesis
85 pathogenesis of disease
86 patients
87 primary mechanism
88 process
89 regulation
90 role
91 second part
92 situation
93 specific cells
94 strategies
95 syndrome
96 technology
97 thymus
98 tolerance
99 tool
100 transcription factors
101 schema:name Management of Murine Lupus by Correction of Fas and Fas Ligand-Induced Apoptosis
102 schema:pagination 671-693
103 schema:productId N04575c2bf6ec44d3b10f65c4d5d92303
104 N947521c77a4c4ee59c9a2bc4f59a7325
105 schema:publisher Na66bfb65bb9c4b7b88b268fc0c875d83
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038580972
107 https://doi.org/10.1007/978-1-59259-703-1_40
108 schema:sdDatePublished 2021-12-01T20:03
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher Nb4a2f09015b24cdb870cb889634e5660
111 schema:url https://doi.org/10.1007/978-1-59259-703-1_40
112 sgo:license sg:explorer/license/
113 sgo:sdDataset chapters
114 rdf:type schema:Chapter
115 N00899d42d41841b9a1a8c062dac9471c rdf:first sg:person.07550405624.18
116 rdf:rest rdf:nil
117 N04575c2bf6ec44d3b10f65c4d5d92303 schema:name dimensions_id
118 schema:value pub.1038580972
119 rdf:type schema:PropertyValue
120 N08104d03ba194919b7eeee8519ef1b91 schema:familyName Tsokos
121 schema:givenName George C.
122 rdf:type schema:Person
123 N947521c77a4c4ee59c9a2bc4f59a7325 schema:name doi
124 schema:value 10.1007/978-1-59259-703-1_40
125 rdf:type schema:PropertyValue
126 N9e73bf16eab043409feaf85497c34e2a schema:isbn 978-1-4757-5686-9
127 978-1-59259-703-1
128 schema:name Lupus
129 rdf:type schema:Book
130 Na576902ec29447ea91f8f0d6f5cbe898 rdf:first sg:person.0664616100.38
131 rdf:rest N00899d42d41841b9a1a8c062dac9471c
132 Na66bfb65bb9c4b7b88b268fc0c875d83 schema:name Springer Nature
133 rdf:type schema:Organisation
134 Nb4a2f09015b24cdb870cb889634e5660 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nbccb46f173c04a1d8e93bfdfe28c07f3 rdf:first N08104d03ba194919b7eeee8519ef1b91
137 rdf:rest rdf:nil
138 Nbe42008bcce74309af1939a9e42b0636 rdf:first sg:person.01054374560.30
139 rdf:rest Na576902ec29447ea91f8f0d6f5cbe898
140 Ndb1642e1ec244c6a9a86d363b9fa79bb rdf:first Nf9012a2ce45641bab31fa3e71db5f72a
141 rdf:rest Nbccb46f173c04a1d8e93bfdfe28c07f3
142 Ndbe7bdbfd0b64399867ebe140e722303 rdf:first sg:person.01263522210.53
143 rdf:rest Nbe42008bcce74309af1939a9e42b0636
144 Nf9012a2ce45641bab31fa3e71db5f72a schema:familyName Kammer
145 schema:givenName Gary M.
146 rdf:type schema:Person
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
151 schema:name Genetics
152 rdf:type schema:DefinedTerm
153 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
154 schema:name Medical and Health Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
157 schema:name Immunology
158 rdf:type schema:DefinedTerm
159 sg:person.01054374560.30 schema:familyName Zhang
160 schema:givenName Huang-Ge
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054374560.30
162 rdf:type schema:Person
163 sg:person.01263522210.53 schema:familyName Hsu
164 schema:givenName Hui-Chen
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263522210.53
166 rdf:type schema:Person
167 sg:person.0664616100.38 schema:familyName Zhou
168 schema:givenName Tong
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664616100.38
170 rdf:type schema:Person
171 sg:person.07550405624.18 schema:familyName Mountz
172 schema:givenName John D.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07550405624.18
174 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...