A Practical Guide to miRNA Target Prediction. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Most Mauluda Akhtar , Luigina Micolucci , Md Soriful Islam , Fabiola Olivieri , Antonio Domenico Procopio

ABSTRACT

MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3' UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output. More... »

PAGES

1-13

References to SciGraph publications

  • 2007-10. The role of site accessibility in microRNA target recognition in NATURE GENETICS
  • 2004-09. The functions of animal microRNAs in NATURE
  • 2015. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis in MICRORNA: BASIC SCIENCE
  • 2010-08. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites in GENOME BIOLOGY
  • 2007-04. Potent effect of target structure on microRNA function in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2009-06. Predicting microRNA targets and functions: traps for the unwary in NATURE METHODS
  • 2005-06. Stem cell division is regulated by the microRNA pathway in NATURE
  • 2005-07. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis in NATURE
  • 2009-03. Many roads to maturity: microRNA biogenesis pathways and their regulation in NATURE CELL BIOLOGY
  • 2011-12. miRTar: an integrated system for identifying miRNA-target interactions in human in BMC BIOINFORMATICS
  • 2000-02. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans in NATURE
  • 2006-03. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation in NATURE CELL BIOLOGY
  • 2005-05. Combinatorial microRNA target predictions in NATURE GENETICS
  • 2013. MicroRNA Target Prediction and Validation in MICRORNA CANCER REGULATION
  • 2003-12. MicroRNA targets in Drosophila in GENOME BIOLOGY
  • 2004-08. Predicting and validating microRNA targets in GENOME BIOLOGY
  • Book

    TITLE

    MicroRNA Target Identification

    ISBN

    978-1-4939-9206-5
    978-1-4939-9207-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4939-9207-2_1

    DOI

    http://dx.doi.org/10.1007/978-1-4939-9207-2_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113301216

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30963484


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Asian University for Women", 
              "id": "https://www.grid.ac/institutes/grid.449190.1", 
              "name": [
                "Bioinformatics, Asian University for Women, Chattogram, Bangladesh. mauluda82@gmail.com."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akhtar", 
            "givenName": "Most Mauluda", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Marche Polytechnic University", 
              "id": "https://www.grid.ac/institutes/grid.7010.6", 
              "name": [
                "Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Universit\u00e0 Politecnica delle Marche, Ancona, Italy.", 
                "Computational Pathology Unit, Department of Clinical and Molecular Sciences, Universit\u00e0 Politecnica delle Marche, Ancona, Italy."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Micolucci", 
            "givenName": "Luigina", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Islam", 
            "givenName": "Md Soriful", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Riposo e Cura per Anziani", 
              "id": "https://www.grid.ac/institutes/grid.418083.6", 
              "name": [
                "Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Universit\u00e0 Politecnica delle Marche, Ancona, Italy.", 
                "Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olivieri", 
            "givenName": "Fabiola", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Riposo e Cura per Anziani", 
              "id": "https://www.grid.ac/institutes/grid.418083.6", 
              "name": [
                "Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Universit\u00e0 Politecnica delle Marche, Ancona, Italy.", 
                "Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Procopio", 
            "givenName": "Antonio Domenico", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000690387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000868752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(03)01018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001386768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(03)01018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001386768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005158555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006264760", 
              "https://doi.org/10.1038/ng2135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2011.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2011.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006787939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007901060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007957046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008138588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.965408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009830673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2014.00023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010520460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011252575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-22380-3_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012196439", 
              "https://doi.org/10.1007/978-3-319-22380-3_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012306772", 
              "https://doi.org/10.1038/nsmb1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012306772", 
              "https://doi.org/10.1038/nsmb1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(87)90478-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012440962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0053685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012621919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012810435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biocel.2009.12.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012999042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mad.2016.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013422350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/database/bau043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015138526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015627764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016904256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017251348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017669524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2005.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018889008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2005.09.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018889008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.07.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019141008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.789803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020076173", 
              "https://doi.org/10.1038/ncb1373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020076173", 
              "https://doi.org/10.1038/ncb1373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2004.12.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020132624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2004.12.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020132624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.082701.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020748413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022335955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022513617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022871535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022955391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2009.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023682432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2006.01.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024475920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024707863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025003770", 
              "https://doi.org/10.1186/gb-2010-11-8-r90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025101661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025557857", 
              "https://doi.org/10.1186/1471-2105-12-300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1121158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028373744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18632/oncotarget.9686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029218520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030088870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030938936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(04)00045-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031254572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-5590-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032044004", 
              "https://doi.org/10.1007/978-94-007-5590-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-9-115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032246159", 
              "https://doi.org/10.1186/gb-2004-5-9-115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.5248604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034010998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034309158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb0309-228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035086053", 
              "https://doi.org/10.1038/ncb0309-228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035539663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035771095", 
              "https://doi.org/10.1038/nature03817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035771095", 
              "https://doi.org/10.1038/nature03817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035771095", 
              "https://doi.org/10.1038/nature03817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037033413", 
              "https://doi.org/10.1038/nature03816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037033413", 
              "https://doi.org/10.1038/nature03816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037192337", 
              "https://doi.org/10.1038/ng1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037192337", 
              "https://doi.org/10.1038/ng1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-5-1-r1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037433425", 
              "https://doi.org/10.1186/gb-2003-5-1-r1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0609-397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037807257", 
              "https://doi.org/10.1038/nmeth0609-397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.762503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038363731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039258013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039765509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0017429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042828716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043341870", 
              "https://doi.org/10.1038/nature02871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043341870", 
              "https://doi.org/10.1038/nature02871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.05005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046247280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046567801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047689840", 
              "https://doi.org/10.1038/35002607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047689840", 
              "https://doi.org/10.1038/35002607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0500775102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049626281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051113890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(93)90529-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051619915"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019", 
        "datePublishedReg": "2019-01-01", 
        "description": "MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3' UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output.", 
        "editor": [
          {
            "familyName": "Lagan\u00e0", 
            "givenName": "Alessandro", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4939-9207-2_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4939-9206-5", 
            "978-1-4939-9207-2"
          ], 
          "name": "MicroRNA Target Identification", 
          "type": "Book"
        }, 
        "name": "A Practical Guide to miRNA Target Prediction.", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30963484"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113301216"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4939-9207-2_1"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4939-9207-2_1", 
          "https://app.dimensions.ai/details/publication/pub.1113301216"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000001.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4939-9207-2_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9207-2_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9207-2_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9207-2_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9207-2_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    319 TRIPLES      23 PREDICATES      95 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4939-9207-2_1 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N7aa9e645e05f48c3bfd313d00d8698a3
    4 schema:citation sg:pub.10.1007/978-3-319-22380-3_5
    5 sg:pub.10.1007/978-94-007-5590-1_3
    6 sg:pub.10.1038/35002607
    7 sg:pub.10.1038/nature02871
    8 sg:pub.10.1038/nature03816
    9 sg:pub.10.1038/nature03817
    10 sg:pub.10.1038/ncb0309-228
    11 sg:pub.10.1038/ncb1373
    12 sg:pub.10.1038/ng1536
    13 sg:pub.10.1038/ng2135
    14 sg:pub.10.1038/nmeth0609-397
    15 sg:pub.10.1038/nsmb1226
    16 sg:pub.10.1186/1471-2105-12-300
    17 sg:pub.10.1186/gb-2003-5-1-r1
    18 sg:pub.10.1186/gb-2004-5-9-115
    19 sg:pub.10.1186/gb-2010-11-8-r90
    20 https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g
    21 https://doi.org/10.1016/0022-2836(87)90478-5
    22 https://doi.org/10.1016/0092-8674(93)90529-y
    23 https://doi.org/10.1016/j.biocel.2009.12.014
    24 https://doi.org/10.1016/j.cell.2004.12.035
    25 https://doi.org/10.1016/j.cell.2006.07.031
    26 https://doi.org/10.1016/j.cell.2009.01.002
    27 https://doi.org/10.1016/j.cub.2006.01.050
    28 https://doi.org/10.1016/j.gene.2005.09.035
    29 https://doi.org/10.1016/j.jbi.2011.05.002
    30 https://doi.org/10.1016/j.mad.2016.12.004
    31 https://doi.org/10.1016/s0092-8674(03)01018-3
    32 https://doi.org/10.1016/s0092-8674(04)00045-5
    33 https://doi.org/10.1073/pnas.0500775102
    34 https://doi.org/10.1093/bioinformatics/btq298
    35 https://doi.org/10.1093/bioinformatics/bts043
    36 https://doi.org/10.1093/bioinformatics/bts615
    37 https://doi.org/10.1093/database/bau043
    38 https://doi.org/10.1093/nar/gki200
    39 https://doi.org/10.1093/nar/gki383
    40 https://doi.org/10.1093/nar/gkj135
    41 https://doi.org/10.1093/nar/gkl243
    42 https://doi.org/10.1093/nar/gkm1012
    43 https://doi.org/10.1093/nar/gkm995
    44 https://doi.org/10.1093/nar/gkp292
    45 https://doi.org/10.1093/nar/gkq768
    46 https://doi.org/10.1093/nar/gkr294
    47 https://doi.org/10.1093/nar/gkr330
    48 https://doi.org/10.1093/nar/gkr988
    49 https://doi.org/10.1093/nar/gks901
    50 https://doi.org/10.1093/nar/gkt1181
    51 https://doi.org/10.1093/nar/gkt379
    52 https://doi.org/10.1093/nar/gkt393
    53 https://doi.org/10.1093/nar/gkt430
    54 https://doi.org/10.1093/nar/gkt435
    55 https://doi.org/10.1093/nar/gku1104
    56 https://doi.org/10.1093/nar/gku1177
    57 https://doi.org/10.1093/nar/gku376
    58 https://doi.org/10.1093/nar/gku409
    59 https://doi.org/10.1093/nar/gkv1221
    60 https://doi.org/10.1101/gr.082701.108
    61 https://doi.org/10.1101/gr.762503
    62 https://doi.org/10.1101/gr.789803
    63 https://doi.org/10.1126/science.1121158
    64 https://doi.org/10.1261/rna.5248604
    65 https://doi.org/10.1261/rna.965408
    66 https://doi.org/10.1371/journal.pbio.0020363
    67 https://doi.org/10.1371/journal.pone.0017429
    68 https://doi.org/10.1371/journal.pone.0053685
    69 https://doi.org/10.18632/oncotarget.9686
    70 https://doi.org/10.3389/fgene.2014.00023
    71 https://doi.org/10.7554/elife.05005
    72 schema:datePublished 2019
    73 schema:datePublishedReg 2019-01-01
    74 schema:description MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3' UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output.
    75 schema:editor N91cfac9aa5aa4c9f86e0d001f3b1a08e
    76 schema:genre chapter
    77 schema:inLanguage en
    78 schema:isAccessibleForFree false
    79 schema:isPartOf N035f9397963e4cf89ba6505a8520cc48
    80 schema:name A Practical Guide to miRNA Target Prediction.
    81 schema:pagination 1-13
    82 schema:productId N07020f33428641e590f951697cb3484b
    83 Nd3e42ebdae0d46c2aa73830472819d39
    84 Nddde62ba5195495cb46949f750d03a50
    85 schema:publisher N1793873eb021405d80352d36fd3e5b21
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113301216
    87 https://doi.org/10.1007/978-1-4939-9207-2_1
    88 schema:sdDatePublished 2019-04-16T09:44
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nff98650208ca41fcbd491ccfb9f08a1a
    91 schema:url http://link.springer.com/10.1007/978-1-4939-9207-2_1
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset chapters
    94 rdf:type schema:Chapter
    95 N035f9397963e4cf89ba6505a8520cc48 schema:isbn 978-1-4939-9206-5
    96 978-1-4939-9207-2
    97 schema:name MicroRNA Target Identification
    98 rdf:type schema:Book
    99 N07020f33428641e590f951697cb3484b schema:name doi
    100 schema:value 10.1007/978-1-4939-9207-2_1
    101 rdf:type schema:PropertyValue
    102 N0d8c00556e074cf6b9a49d0e9bd05f56 schema:affiliation https://www.grid.ac/institutes/grid.418083.6
    103 schema:familyName Procopio
    104 schema:givenName Antonio Domenico
    105 rdf:type schema:Person
    106 N1793873eb021405d80352d36fd3e5b21 schema:location New York, NY
    107 schema:name Springer New York
    108 rdf:type schema:Organisation
    109 N318230f42bf9460fbfadadc553c14b52 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    110 schema:familyName Islam
    111 schema:givenName Md Soriful
    112 rdf:type schema:Person
    113 N41a3f5af5a2f4bd8a98352b88d0869df schema:familyName Laganà
    114 schema:givenName Alessandro
    115 rdf:type schema:Person
    116 N46746430b59b44fcbd38a61b04049646 schema:affiliation https://www.grid.ac/institutes/grid.449190.1
    117 schema:familyName Akhtar
    118 schema:givenName Most Mauluda
    119 rdf:type schema:Person
    120 N49caf7a1cd004ae4bce158ec1db7ff92 rdf:first N0d8c00556e074cf6b9a49d0e9bd05f56
    121 rdf:rest rdf:nil
    122 N59c09679229b4d1393d0f08feadd99bf rdf:first N9e9ff931cb2d4789874680d92e5f10ce
    123 rdf:rest N49caf7a1cd004ae4bce158ec1db7ff92
    124 N7aa9e645e05f48c3bfd313d00d8698a3 rdf:first N46746430b59b44fcbd38a61b04049646
    125 rdf:rest Na6c6cd25749a49348d6dec10915f0884
    126 N91cfac9aa5aa4c9f86e0d001f3b1a08e rdf:first N41a3f5af5a2f4bd8a98352b88d0869df
    127 rdf:rest rdf:nil
    128 N9e9ff931cb2d4789874680d92e5f10ce schema:affiliation https://www.grid.ac/institutes/grid.418083.6
    129 schema:familyName Olivieri
    130 schema:givenName Fabiola
    131 rdf:type schema:Person
    132 Na6c6cd25749a49348d6dec10915f0884 rdf:first Nbb67fb82a9e4429698a18287731db7df
    133 rdf:rest Nbc64ce5c953d410c846a765e082700ef
    134 Nbb67fb82a9e4429698a18287731db7df schema:affiliation https://www.grid.ac/institutes/grid.7010.6
    135 schema:familyName Micolucci
    136 schema:givenName Luigina
    137 rdf:type schema:Person
    138 Nbc64ce5c953d410c846a765e082700ef rdf:first N318230f42bf9460fbfadadc553c14b52
    139 rdf:rest N59c09679229b4d1393d0f08feadd99bf
    140 Nd3e42ebdae0d46c2aa73830472819d39 schema:name pubmed_id
    141 schema:value 30963484
    142 rdf:type schema:PropertyValue
    143 Nddde62ba5195495cb46949f750d03a50 schema:name dimensions_id
    144 schema:value pub.1113301216
    145 rdf:type schema:PropertyValue
    146 Nff98650208ca41fcbd491ccfb9f08a1a schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Biological Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Genetics
    153 rdf:type schema:DefinedTerm
    154 sg:pub.10.1007/978-3-319-22380-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012196439
    155 https://doi.org/10.1007/978-3-319-22380-3_5
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-94-007-5590-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032044004
    158 https://doi.org/10.1007/978-94-007-5590-1_3
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/35002607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047689840
    161 https://doi.org/10.1038/35002607
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nature02871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341870
    164 https://doi.org/10.1038/nature02871
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nature03816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037033413
    167 https://doi.org/10.1038/nature03816
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature03817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035771095
    170 https://doi.org/10.1038/nature03817
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/ncb0309-228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035086053
    173 https://doi.org/10.1038/ncb0309-228
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/ncb1373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020076173
    176 https://doi.org/10.1038/ncb1373
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ng1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037192337
    179 https://doi.org/10.1038/ng1536
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/ng2135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006264760
    182 https://doi.org/10.1038/ng2135
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nmeth0609-397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037807257
    185 https://doi.org/10.1038/nmeth0609-397
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nsmb1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012306772
    188 https://doi.org/10.1038/nsmb1226
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1471-2105-12-300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025557857
    191 https://doi.org/10.1186/1471-2105-12-300
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/gb-2003-5-1-r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037433425
    194 https://doi.org/10.1186/gb-2003-5-1-r1
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/gb-2004-5-9-115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032246159
    197 https://doi.org/10.1186/gb-2004-5-9-115
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/gb-2010-11-8-r90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025003770
    200 https://doi.org/10.1186/gb-2010-11-8-r90
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101661
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/0022-2836(87)90478-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012440962
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/0092-8674(93)90529-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051619915
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.biocel.2009.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012999042
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.cell.2004.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132624
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.cell.2006.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019141008
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.cell.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023682432
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.cub.2006.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024475920
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.gene.2005.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018889008
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.jbi.2011.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493344
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.mad.2016.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013422350
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/s0092-8674(03)01018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001386768
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s0092-8674(04)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254572
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1073/pnas.0500775102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049626281
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bioinformatics/btq298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006787939
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/bioinformatics/bts043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000690387
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/bioinformatics/bts615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007901060
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/database/bau043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015138526
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/nar/gki200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051113890
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/nar/gki383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022335955
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/gkj135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024707863
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/nar/gkl243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022513617
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gkm1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035539663
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/nar/gkm995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015627764
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/nar/gkp292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030088870
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nar/gkq768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008138588
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/nar/gkr294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046567801
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012810435
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkr988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017669524
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gks901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039258013
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkt1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016904256
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/nar/gkt379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011252575
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/nar/gkt393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000868752
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/nar/gkt430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017251348
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/nar/gkt435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030938936
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1093/nar/gku1104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005158555
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1093/nar/gku1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022955391
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1093/nar/gku376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034309158
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1093/nar/gku409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039765509
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1093/nar/gkv1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007957046
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1101/gr.082701.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020748413
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1101/gr.762503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038363731
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1101/gr.789803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155520
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1126/science.1121158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028373744
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1261/rna.5248604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034010998
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1261/rna.965408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009830673
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1371/journal.pbio.0020363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022871535
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1371/journal.pone.0017429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042828716
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1371/journal.pone.0053685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012621919
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.18632/oncotarget.9686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218520
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.3389/fgene.2014.00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010520460
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.7554/elife.05005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046247280
    305 rdf:type schema:CreativeWork
    306 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    307 schema:name Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, USA.
    308 rdf:type schema:Organization
    309 https://www.grid.ac/institutes/grid.418083.6 schema:alternateName Istituto Nazionale di Riposo e Cura per Anziani
    310 schema:name Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy.
    311 Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
    312 rdf:type schema:Organization
    313 https://www.grid.ac/institutes/grid.449190.1 schema:alternateName Asian University for Women
    314 schema:name Bioinformatics, Asian University for Women, Chattogram, Bangladesh. mauluda82@gmail.com.
    315 rdf:type schema:Organization
    316 https://www.grid.ac/institutes/grid.7010.6 schema:alternateName Marche Polytechnic University
    317 schema:name Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
    318 Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
    319 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...