Application of Solid-State Capture for the Retrieval of Small-to-Medium Sized Target Loci from Ancient DNA. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Johanna L A Paijmans , Gloria González Fortes , Daniel W Förster

ABSTRACT

Genetic studies that include ancient samples are often hampered by the low amount of endogenous DNA that ancient samples often contain, relative to co-extracted "contaminant" DNA from other organisms. One approach to mitigate this challenge is to perform hybridization-based capture of target genomic regions using DNA or RNA baits. Such baits are designed to have high sequence similarity to the target genomic regions and can reduce the off-target fraction in DNA sequencing libraries. Here, we present a protocol to use Agilent SureSelect microarrays to enrich ancient DNA libraries for small-to-medium-sized target loci, such as mitochondrial genomes, from ancient DNA extracts. The protocol that we present builds on previously published work by introducing improvements that improve recovery of short DNA fragments while minimizing the cost and duration of the experiment. More... »

PAGES

129-139

Book

TITLE

Ancient DNA

ISBN

978-1-4939-9175-4
978-1-4939-9176-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-9176-1_14

DOI

http://dx.doi.org/10.1007/978-1-4939-9176-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112770944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30875051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Potsdam", 
          "id": "https://www.grid.ac/institutes/grid.11348.3f", 
          "name": [
            "Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany. paijmans.jla@gmail.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paijmans", 
        "givenName": "Johanna L A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ferrara", 
          "id": "https://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez Fortes", 
        "givenName": "Gloria", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Zoo and Wildlife Research", 
          "id": "https://www.grid.ac/institutes/grid.418779.4", 
          "name": [
            "Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "F\u00f6rster", 
        "givenName": "Daniel W", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature17405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000245668", 
          "https://doi.org/10.1038/nature17405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0129102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002600606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1221359110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003685395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009828502", 
          "https://doi.org/10.1038/nprot.2009.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009828502", 
          "https://doi.org/10.1038/nprot.2009.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-44-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009930584", 
          "https://doi.org/10.1186/1297-9686-44-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ympev.2015.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012544174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1405138111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015245744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.13304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2013.0375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019091279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025405497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026240267", 
          "https://doi.org/10.1038/ncomms6631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028533464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.13800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033582832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034246196", 
          "https://doi.org/10.1038/nprot.2013.038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037916651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042284160", 
          "https://doi.org/10.1038/nature10549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046463951", 
          "https://doi.org/10.1038/nature14317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1105107108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049707959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060411299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1174462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000113809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/014985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/014985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/014985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13104-017-3061-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099733837", 
          "https://doi.org/10.1186/s13104-017-3061-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104430732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Genetic studies that include ancient samples are often hampered by the low amount of endogenous DNA that ancient samples often contain, relative to co-extracted \"contaminant\" DNA from other organisms. One approach to mitigate this challenge is to perform hybridization-based capture of target genomic regions using DNA or RNA baits. Such baits are designed to have high sequence similarity to the target genomic regions and can reduce the off-target fraction in DNA sequencing libraries. Here, we present a protocol to use Agilent SureSelect microarrays to enrich ancient DNA libraries for small-to-medium-sized target loci, such as mitochondrial genomes, from ancient DNA extracts. The protocol that we present builds on previously published work by introducing improvements that improve recovery of short DNA fragments while minimizing the cost and duration of the experiment.", 
    "editor": [
      {
        "familyName": "Shapiro", 
        "givenName": "Beth", 
        "type": "Person"
      }, 
      {
        "familyName": "Barlow", 
        "givenName": "Axel", 
        "type": "Person"
      }, 
      {
        "familyName": "Heintzman", 
        "givenName": "Peter D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hofreiter", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Paijmans", 
        "givenName": "Johanna L. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Soares", 
        "givenName": "Andr\u00e9 E. R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-9176-1_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-9175-4", 
        "978-1-4939-9176-1"
      ], 
      "name": "Ancient DNA", 
      "type": "Book"
    }, 
    "name": "Application of Solid-State Capture for the Retrieval of Small-to-Medium Sized Target Loci from Ancient DNA.", 
    "pagination": "129-139", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30875051"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112770944"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-9176-1_14"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-9176-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1112770944"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106842_00000002.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-9176-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9176-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9176-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9176-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9176-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      23 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-9176-1_14 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N5d6e61e37ffe49c199b23aec6bf17fed
4 schema:citation sg:pub.10.1038/nature10549
5 sg:pub.10.1038/nature14317
6 sg:pub.10.1038/nature17405
7 sg:pub.10.1038/ncomms6631
8 sg:pub.10.1038/nprot.2009.68
9 sg:pub.10.1038/nprot.2013.038
10 sg:pub.10.1186/1297-9686-44-21
11 sg:pub.10.1186/s13104-017-3061-3
12 https://doi.org/10.1016/j.ympev.2015.05.022
13 https://doi.org/10.1073/pnas.1105107108
14 https://doi.org/10.1073/pnas.1221359110
15 https://doi.org/10.1073/pnas.1405138111
16 https://doi.org/10.1098/rstb.2013.0375
17 https://doi.org/10.1101/014985
18 https://doi.org/10.1101/pdb.prot5448
19 https://doi.org/10.1111/1755-0998.12420
20 https://doi.org/10.1111/1755-0998.12448
21 https://doi.org/10.1111/1755-0998.12595
22 https://doi.org/10.1111/1755-0998.12911
23 https://doi.org/10.1111/mec.13304
24 https://doi.org/10.1111/mec.13800
25 https://doi.org/10.1126/science.1174462
26 https://doi.org/10.1126/science.1188021
27 https://doi.org/10.1371/journal.pone.0129102
28 https://doi.org/10.2144/000113809
29 https://doi.org/10.2144/000114039
30 https://doi.org/10.2144/000114114
31 https://doi.org/10.2144/000114320
32 schema:datePublished 2019
33 schema:datePublishedReg 2019-01-01
34 schema:description Genetic studies that include ancient samples are often hampered by the low amount of endogenous DNA that ancient samples often contain, relative to co-extracted "contaminant" DNA from other organisms. One approach to mitigate this challenge is to perform hybridization-based capture of target genomic regions using DNA or RNA baits. Such baits are designed to have high sequence similarity to the target genomic regions and can reduce the off-target fraction in DNA sequencing libraries. Here, we present a protocol to use Agilent SureSelect microarrays to enrich ancient DNA libraries for small-to-medium-sized target loci, such as mitochondrial genomes, from ancient DNA extracts. The protocol that we present builds on previously published work by introducing improvements that improve recovery of short DNA fragments while minimizing the cost and duration of the experiment.
35 schema:editor Nb93d313ae4e0458eb040ce904cc33e7f
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N28e96921beba432c9a0331ace5f71941
40 schema:name Application of Solid-State Capture for the Retrieval of Small-to-Medium Sized Target Loci from Ancient DNA.
41 schema:pagination 129-139
42 schema:productId N7dde8d12d1794d04b9905b263ce21f12
43 Nac5dddd271af49d6a8e07fdc00117224
44 Nccfcbf23fdf74be3ae8718bd7141beba
45 schema:publisher Nc690c45b852e4fa3a02d4fc37ba78979
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112770944
47 https://doi.org/10.1007/978-1-4939-9176-1_14
48 schema:sdDatePublished 2019-04-16T10:11
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N72bb3f25f42b41fd8a30f1ac67d08258
51 schema:url http://link.springer.com/10.1007/978-1-4939-9176-1_14
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N170c07d6e40f442eac6a5a6cd1f4b02c schema:familyName Hofreiter
56 schema:givenName Michael
57 rdf:type schema:Person
58 N28e96921beba432c9a0331ace5f71941 schema:isbn 978-1-4939-9175-4
59 978-1-4939-9176-1
60 schema:name Ancient DNA
61 rdf:type schema:Book
62 N28eb1357317d4b8688c60cc9ff32d1ba rdf:first N36a691895b8e4e5cad1c09d375d368dd
63 rdf:rest Nd15d639d57964479ad00700c73abda4e
64 N36a691895b8e4e5cad1c09d375d368dd schema:familyName Paijmans
65 schema:givenName Johanna L. A.
66 rdf:type schema:Person
67 N4e530290aa2341a49789b6c6c99546da rdf:first Nb4e5a492904f48b9919574c1889cdfdc
68 rdf:rest N851ecf506ae649d89bfb85df9ef42738
69 N5d6e61e37ffe49c199b23aec6bf17fed rdf:first N69307bece8ae4cd0be360897b714e559
70 rdf:rest Na8b55dce868b45988a9e99282ab069eb
71 N69307bece8ae4cd0be360897b714e559 schema:affiliation https://www.grid.ac/institutes/grid.11348.3f
72 schema:familyName Paijmans
73 schema:givenName Johanna L A
74 rdf:type schema:Person
75 N72bb3f25f42b41fd8a30f1ac67d08258 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N7dde8d12d1794d04b9905b263ce21f12 schema:name doi
78 schema:value 10.1007/978-1-4939-9176-1_14
79 rdf:type schema:PropertyValue
80 N851ecf506ae649d89bfb85df9ef42738 rdf:first Nbe945767cd8446ae84c7f53ed3edbdaa
81 rdf:rest Nf91abb28f62f4e6193e0fd549920dfe8
82 N97fa89dc580546ac80667b1e5023c03b schema:familyName Soares
83 schema:givenName André E. R.
84 rdf:type schema:Person
85 Na7285dbf111641f3955d799c553c42ad schema:affiliation https://www.grid.ac/institutes/grid.8484.0
86 schema:familyName González Fortes
87 schema:givenName Gloria
88 rdf:type schema:Person
89 Na8b55dce868b45988a9e99282ab069eb rdf:first Na7285dbf111641f3955d799c553c42ad
90 rdf:rest Nc2f080314eca4f828b95e9ad950b9f37
91 Nac5dddd271af49d6a8e07fdc00117224 schema:name dimensions_id
92 schema:value pub.1112770944
93 rdf:type schema:PropertyValue
94 Nb4e5a492904f48b9919574c1889cdfdc schema:familyName Barlow
95 schema:givenName Axel
96 rdf:type schema:Person
97 Nb93d313ae4e0458eb040ce904cc33e7f rdf:first Nd9f10429c759456b9e315b720415dd76
98 rdf:rest N4e530290aa2341a49789b6c6c99546da
99 Nbc992e2f4eb24d2188821e1b1800e90b schema:affiliation https://www.grid.ac/institutes/grid.418779.4
100 schema:familyName Förster
101 schema:givenName Daniel W
102 rdf:type schema:Person
103 Nbe945767cd8446ae84c7f53ed3edbdaa schema:familyName Heintzman
104 schema:givenName Peter D.
105 rdf:type schema:Person
106 Nc2f080314eca4f828b95e9ad950b9f37 rdf:first Nbc992e2f4eb24d2188821e1b1800e90b
107 rdf:rest rdf:nil
108 Nc690c45b852e4fa3a02d4fc37ba78979 schema:location New York, NY
109 schema:name Springer New York
110 rdf:type schema:Organisation
111 Nccfcbf23fdf74be3ae8718bd7141beba schema:name pubmed_id
112 schema:value 30875051
113 rdf:type schema:PropertyValue
114 Nd15d639d57964479ad00700c73abda4e rdf:first N97fa89dc580546ac80667b1e5023c03b
115 rdf:rest rdf:nil
116 Nd9f10429c759456b9e315b720415dd76 schema:familyName Shapiro
117 schema:givenName Beth
118 rdf:type schema:Person
119 Nf91abb28f62f4e6193e0fd549920dfe8 rdf:first N170c07d6e40f442eac6a5a6cd1f4b02c
120 rdf:rest N28eb1357317d4b8688c60cc9ff32d1ba
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
125 schema:name Genetics
126 rdf:type schema:DefinedTerm
127 sg:pub.10.1038/nature10549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042284160
128 https://doi.org/10.1038/nature10549
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature14317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046463951
131 https://doi.org/10.1038/nature14317
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature17405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000245668
134 https://doi.org/10.1038/nature17405
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/ncomms6631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026240267
137 https://doi.org/10.1038/ncomms6631
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nprot.2009.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009828502
140 https://doi.org/10.1038/nprot.2009.68
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nprot.2013.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034246196
143 https://doi.org/10.1038/nprot.2013.038
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1297-9686-44-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009930584
146 https://doi.org/10.1186/1297-9686-44-21
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/s13104-017-3061-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099733837
149 https://doi.org/10.1186/s13104-017-3061-3
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ympev.2015.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012544174
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.1105107108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049707959
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.1221359110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003685395
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.1405138111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015245744
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1098/rstb.2013.0375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019091279
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1101/014985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085109948
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1101/pdb.prot5448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060411299
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/1755-0998.12420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028533464
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/1755-0998.12448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025405497
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/1755-0998.12595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916651
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/1755-0998.12911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104430732
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1111/mec.13304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018306300
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/mec.13800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033582832
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1174462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460190
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1188021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002597304
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pone.0129102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002600606
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2144/000113809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096399
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2144/000114039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096532
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2144/000114114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096604
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2144/000114320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096806
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.11348.3f schema:alternateName University of Potsdam
192 schema:name Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany. paijmans.jla@gmail.com.
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.418779.4 schema:alternateName Leibniz Institute for Zoo and Wildlife Research
195 schema:name Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.8484.0 schema:alternateName University of Ferrara
198 schema:name Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...