Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Elijah MacCarthy , Derrick Perry , Dukka B Kc

ABSTRACT

Due to the advancement in various sequencing technologies, the gap between the number of protein sequences and the number of experimental protein structures is ever increasing. Community-wide initiatives like CASP have resulted in considerable efforts in the development of computational methods to accurately model protein structures from sequences. Sequence-based prediction of super-secondary structure has direct application in protein structure prediction, and there have been significant efforts in the prediction of super-secondary structure in the last decade. In this chapter, we first introduce the protein structure prediction problem and highlight some of the important progress in the field of protein structure prediction. Next, we discuss recent methods for the prediction of super-secondary structures. Finally, we discuss applications of super-secondary structure prediction in structure prediction/analysis of proteins. We also discuss prediction of protein structures that are composed of simple super-secondary structure repeats and protein structures that are composed of complex super-secondary structure repeats. Finally, we also discuss the recent trends in the field. More... »

PAGES

15-45

References to SciGraph publications

  • 2017-12. ACCORD: an assessment tool to determine the orientation of homodimeric coiled-coils in SCIENTIFIC REPORTS
  • 2009-08. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts in JOURNAL OF BIOMOLECULAR NMR
  • 2010-04. I-TASSER: a unified platform for automated protein structure and function prediction in NATURE PROTOCOLS
  • 2012-03. Identification of helix capping and β-turn motifs from NMR chemical shifts in JOURNAL OF BIOMOLECULAR NMR
  • 2014-11. CSI 2.0: a significantly improved version of the Chemical Shift Index in JOURNAL OF BIOMOLECULAR NMR
  • 1983-02. Prediction of super-secondary structure in proteins in NATURE
  • 2016-05. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields in SCIENTIFIC REPORTS
  • 2012-12. A graph-theoretic approach for classification and structure prediction of transmembrane β-barrel proteins in BMC GENOMICS
  • 2005-12. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods in BMC STRUCTURAL BIOLOGY
  • 2012-02. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment in NATURE METHODS
  • 2005-12. PALSSE: A program to delineate linear secondary structural elements from protein structures in BMC BIOINFORMATICS
  • 2013-07. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks in JOURNAL OF BIOMOLECULAR NMR
  • 2005-12. Secondary structure assignment that accurately reflects physical and evolutionary characteristics in BMC BIOINFORMATICS
  • 2005-12. The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications in BMC BIOINFORMATICS
  • 2012. Computational Prediction of Secondary and Supersecondary Structures in PROTEIN SUPERSECONDARY STRUCTURES
  • 2008-12. I-TASSER server for protein 3D structure prediction in BMC BIOINFORMATICS
  • Book

    TITLE

    Protein Supersecondary Structures

    ISBN

    978-1-4939-9160-0
    978-1-4939-9161-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4939-9161-7_2

    DOI

    http://dx.doi.org/10.1007/978-1-4939-9161-7_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113182582

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30945212


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacCarthy", 
            "givenName": "Elijah", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perry", 
            "givenName": "Derrick", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA. dbkc@ncat.edu."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kc", 
            "givenName": "Dukka B", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/13.3.291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000502198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340060105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000678646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340060105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000678646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471250953.bi0506s47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000988724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.23182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000999122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.47.9.1309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001035444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.03494504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001450144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0023294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002695920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002924349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2005.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003898990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004050377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2015.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004980132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2015.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004980132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006157910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006157910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.21080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006253876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006831777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006859681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006999469", 
              "https://doi.org/10.1038/nprot.2010.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006999469", 
              "https://doi.org/10.1038/nprot.2010.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0080493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007431607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009265854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009289640", 
              "https://doi.org/10.1186/1471-2105-6-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009289640", 
              "https://doi.org/10.1186/1471-2105-6-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-012-9602-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010096083", 
              "https://doi.org/10.1007/s10858-012-9602-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.10.4436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010770066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.23111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010825396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0958-1669(96)80117-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010971474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2010.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011650175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2010.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011650175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011732715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(69)90487-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011839241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1997.0959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011896927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011924374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012339407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012339407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012787161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012884653", 
              "https://doi.org/10.1186/1471-2105-6-202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0134(1997)1+<185::aid-prot24>3.0.co;2-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013110631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013742279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014639729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014655755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2013.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014668211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2013.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014668211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015432789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017098509", 
              "https://doi.org/10.1038/nmeth.1818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.12.1060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017546918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340030202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018753713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340030202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018753713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021982817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2006.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022519099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/12.2.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023574386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2009.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024310759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/301540a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025735061", 
              "https://doi.org/10.1038/301540a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5mb00119f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025963133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(04)83004-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026092698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026371509", 
              "https://doi.org/10.1186/1471-2105-9-40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4mb00569d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026563351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027676037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027804875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027880064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(03)74020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027914988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028557855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0305695101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028755639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sjbs.2015.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029580465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-s4-s8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029696227", 
              "https://doi.org/10.1186/1471-2105-6-s4-s8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5483/bmbrep.2011.44.2.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-013-9741-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029729036", 
              "https://doi.org/10.1007/s10858-013-9741-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1993.1626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030443070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.10543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030564444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030805243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1120036109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032203559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.21616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033184342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033991936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.1171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035306466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036131182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep18962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036395831", 
              "https://doi.org/10.1038/srep18962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2006.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036613571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.2893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036768378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036904106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037273117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-009-9333-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037424361", 
              "https://doi.org/10.1007/s10858-009-9333-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-009-9333-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037424361", 
              "https://doi.org/10.1007/s10858-009-9333-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-009-9333-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037424361", 
              "https://doi.org/10.1007/s10858-009-9333-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1607178113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037564909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/15.5.353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037926210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0139280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038294406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6807-5-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038736977", 
              "https://doi.org/10.1186/1472-6807-5-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.22118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039199790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039716879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040730157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2016.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041248017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2016.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041248017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/sb300028q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041314400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042070753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-065-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042455302", 
              "https://doi.org/10.1007/978-1-62703-065-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043779289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560060606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044153185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsbi.2001.4392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044174046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044471317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.107.109959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045006319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bip.360221211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045206155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq1001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045308353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2034522100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045368344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2008.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045669470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<313::aid-prot5>3.0.co;2-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046219270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.10.5482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048195138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiolchem.2014.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049155330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-s2-s5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049374696", 
              "https://doi.org/10.1186/1471-2164-13-s2-s5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049630530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.162376199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049651438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050292361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.24918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051644844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052245066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.340230412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052245066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052500366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(97)00260-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052608197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052745330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sjbs.2016.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052918609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiolchem.2008.07.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053088201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-014-9863-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053181007", 
              "https://doi.org/10.1007/s10858-014-9863-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053201009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053249805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(77)90207-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054544613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbv047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbw070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbw129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbw129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-71-12-3075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060357433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1113801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.181.4096.223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062507831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1853201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062510404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/092986610791760333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069158563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csbj.2017.01.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083411573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2017.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083849172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2017.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083849172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084131299", 
              "https://doi.org/10.1038/srep43318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2017.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085144187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2017.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085144187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2017.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085144187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2017.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085144187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.3279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091323856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btx551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091479726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2018.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101561503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2018.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101561503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s1793524518500468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101640747"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019", 
        "datePublishedReg": "2019-01-01", 
        "description": "Due to the advancement in various sequencing technologies, the gap between the number of protein sequences and the number of experimental protein structures is ever increasing. Community-wide initiatives like CASP have resulted in considerable efforts in the development of computational methods to accurately model protein structures from sequences. Sequence-based prediction of super-secondary structure has direct application in protein structure prediction, and there have been significant efforts in the prediction of super-secondary structure in the last decade. In this chapter, we first introduce the protein structure prediction problem and highlight some of the important progress in the field of protein structure prediction. Next, we discuss recent methods for the prediction of super-secondary structures. Finally, we discuss applications of super-secondary structure prediction in structure prediction/analysis of proteins. We also discuss prediction of protein structures that are composed of simple super-secondary structure repeats and protein structures that are composed of complex super-secondary structure repeats. Finally, we also discuss the recent trends in the field.", 
        "editor": [
          {
            "familyName": "Kister", 
            "givenName": "Alexander E.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4939-9161-7_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4939-9160-0", 
            "978-1-4939-9161-7"
          ], 
          "name": "Protein Supersecondary Structures", 
          "type": "Book"
        }, 
        "name": "Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction.", 
        "pagination": "15-45", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30945212"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113182582"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4939-9161-7_2"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4939-9161-7_2", 
          "https://app.dimensions.ai/details/publication/pub.1113182582"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13104_00000002.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4939-9161-7_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9161-7_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9161-7_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9161-7_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9161-7_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    486 TRIPLES      23 PREDICATES      158 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4939-9161-7_2 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N19ae4fa0f4b74c918a0d27959d83fdd8
    4 schema:citation sg:pub.10.1007/978-1-62703-065-6_5
    5 sg:pub.10.1007/s10858-009-9333-z
    6 sg:pub.10.1007/s10858-012-9602-0
    7 sg:pub.10.1007/s10858-013-9741-y
    8 sg:pub.10.1007/s10858-014-9863-x
    9 sg:pub.10.1038/301540a0
    10 sg:pub.10.1038/nmeth.1818
    11 sg:pub.10.1038/nprot.2010.5
    12 sg:pub.10.1038/srep18962
    13 sg:pub.10.1038/srep43318
    14 sg:pub.10.1186/1471-2105-6-202
    15 sg:pub.10.1186/1471-2105-6-21
    16 sg:pub.10.1186/1471-2105-6-s4-s8
    17 sg:pub.10.1186/1471-2105-9-40
    18 sg:pub.10.1186/1471-2164-13-s2-s5
    19 sg:pub.10.1186/1472-6807-5-17
    20 https://doi.org/10.1002/(sici)1097-0134(1997)1+<185::aid-prot24>3.0.co;2-j
    21 https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<313::aid-prot5>3.0.co;2-1
    22 https://doi.org/10.1002/0471250953.bi0506s47
    23 https://doi.org/10.1002/bip.360221211
    24 https://doi.org/10.1002/jcc.21080
    25 https://doi.org/10.1002/jcc.21616
    26 https://doi.org/10.1002/pro.2893
    27 https://doi.org/10.1002/pro.3279
    28 https://doi.org/10.1002/pro.5560060606
    29 https://doi.org/10.1002/prot.10304
    30 https://doi.org/10.1002/prot.10542
    31 https://doi.org/10.1002/prot.10543
    32 https://doi.org/10.1002/prot.10589
    33 https://doi.org/10.1002/prot.1171
    34 https://doi.org/10.1002/prot.21654
    35 https://doi.org/10.1002/prot.21764
    36 https://doi.org/10.1002/prot.21945
    37 https://doi.org/10.1002/prot.22118
    38 https://doi.org/10.1002/prot.23111
    39 https://doi.org/10.1002/prot.23182
    40 https://doi.org/10.1002/prot.24105
    41 https://doi.org/10.1002/prot.24179
    42 https://doi.org/10.1002/prot.24536
    43 https://doi.org/10.1002/prot.24703
    44 https://doi.org/10.1002/prot.24918
    45 https://doi.org/10.1002/prot.340030202
    46 https://doi.org/10.1002/prot.340060105
    47 https://doi.org/10.1002/prot.340230412
    48 https://doi.org/10.1006/jmbi.1993.1626
    49 https://doi.org/10.1006/jmbi.1997.0959
    50 https://doi.org/10.1006/jsbi.2001.4392
    51 https://doi.org/10.1016/0022-2836(69)90487-2
    52 https://doi.org/10.1016/0022-2836(77)90207-8
    53 https://doi.org/10.1016/0022-2836(81)90087-5
    54 https://doi.org/10.1016/j.compbiolchem.2008.07.027
    55 https://doi.org/10.1016/j.compbiolchem.2014.10.001
    56 https://doi.org/10.1016/j.csbj.2017.01.008
    57 https://doi.org/10.1016/j.jsb.2006.03.009
    58 https://doi.org/10.1016/j.jtbi.2015.06.006
    59 https://doi.org/10.1016/j.jtbi.2016.11.001
    60 https://doi.org/10.1016/j.sbi.2005.05.011
    61 https://doi.org/10.1016/j.sbi.2006.02.004
    62 https://doi.org/10.1016/j.sbi.2008.02.004
    63 https://doi.org/10.1016/j.sbi.2017.03.012
    64 https://doi.org/10.1016/j.sbi.2018.02.005
    65 https://doi.org/10.1016/j.sjbs.2015.10.005
    66 https://doi.org/10.1016/j.sjbs.2016.11.014
    67 https://doi.org/10.1016/j.str.2009.09.006
    68 https://doi.org/10.1016/j.str.2010.04.007
    69 https://doi.org/10.1016/j.str.2013.04.012
    70 https://doi.org/10.1016/j.str.2017.01.011
    71 https://doi.org/10.1016/s0022-2836(05)80134-2
    72 https://doi.org/10.1016/s0076-6879(03)74020-8
    73 https://doi.org/10.1016/s0076-6879(04)83004-0
    74 https://doi.org/10.1016/s0958-1669(96)80117-0
    75 https://doi.org/10.1016/s0969-2126(97)00260-8
    76 https://doi.org/10.1021/sb300028q
    77 https://doi.org/10.1039/c4mb00569d
    78 https://doi.org/10.1039/c5mb00119f
    79 https://doi.org/10.1073/pnas.0305695101
    80 https://doi.org/10.1073/pnas.1120036109
    81 https://doi.org/10.1073/pnas.1607178113
    82 https://doi.org/10.1073/pnas.162376199
    83 https://doi.org/10.1073/pnas.2034522100
    84 https://doi.org/10.1073/pnas.47.9.1309
    85 https://doi.org/10.1073/pnas.91.10.4436
    86 https://doi.org/10.1073/pnas.96.10.5482
    87 https://doi.org/10.1093/bib/bbv047
    88 https://doi.org/10.1093/bib/bbw070
    89 https://doi.org/10.1093/bib/bbw129
    90 https://doi.org/10.1093/bioinformatics/13.3.291
    91 https://doi.org/10.1093/bioinformatics/15.12.1060
    92 https://doi.org/10.1093/bioinformatics/btg124
    93 https://doi.org/10.1093/bioinformatics/bth367
    94 https://doi.org/10.1093/bioinformatics/bti125
    95 https://doi.org/10.1093/bioinformatics/bti575
    96 https://doi.org/10.1093/bioinformatics/btl353
    97 https://doi.org/10.1093/bioinformatics/btr299
    98 https://doi.org/10.1093/bioinformatics/btr350
    99 https://doi.org/10.1093/bioinformatics/btr541
    100 https://doi.org/10.1093/bioinformatics/btr638
    101 https://doi.org/10.1093/bioinformatics/bts648
    102 https://doi.org/10.1093/bioinformatics/bts728
    103 https://doi.org/10.1093/bioinformatics/btu700
    104 https://doi.org/10.1093/bioinformatics/btx551
    105 https://doi.org/10.1093/nar/25.17.3389
    106 https://doi.org/10.1093/nar/gkg543
    107 https://doi.org/10.1093/nar/gki588
    108 https://doi.org/10.1093/nar/gkl205
    109 https://doi.org/10.1093/nar/gkm251
    110 https://doi.org/10.1093/nar/gkm993
    111 https://doi.org/10.1093/nar/gkn721
    112 https://doi.org/10.1093/nar/gkq1001
    113 https://doi.org/10.1093/nar/gkt1144
    114 https://doi.org/10.1093/nar/gkt1189
    115 https://doi.org/10.1093/nar/gku364
    116 https://doi.org/10.1093/nar/gkw1137
    117 https://doi.org/10.1093/protein/12.2.85
    118 https://doi.org/10.1093/protein/15.5.353
    119 https://doi.org/10.1099/0022-1317-71-12-3075
    120 https://doi.org/10.1110/ps.03494504
    121 https://doi.org/10.1126/science.1065659
    122 https://doi.org/10.1126/science.1113801
    123 https://doi.org/10.1126/science.181.4096.223
    124 https://doi.org/10.1126/science.1853201
    125 https://doi.org/10.1142/s1793524518500468
    126 https://doi.org/10.1371/journal.pcbi.1000750
    127 https://doi.org/10.1371/journal.pcbi.1004419
    128 https://doi.org/10.1371/journal.pone.0023294
    129 https://doi.org/10.1371/journal.pone.0080493
    130 https://doi.org/10.1371/journal.pone.0092197
    131 https://doi.org/10.1371/journal.pone.0139280
    132 https://doi.org/10.1529/biophysj.107.109959
    133 https://doi.org/10.2174/092986610791760333
    134 https://doi.org/10.5483/bmbrep.2011.44.2.118
    135 schema:datePublished 2019
    136 schema:datePublishedReg 2019-01-01
    137 schema:description Due to the advancement in various sequencing technologies, the gap between the number of protein sequences and the number of experimental protein structures is ever increasing. Community-wide initiatives like CASP have resulted in considerable efforts in the development of computational methods to accurately model protein structures from sequences. Sequence-based prediction of super-secondary structure has direct application in protein structure prediction, and there have been significant efforts in the prediction of super-secondary structure in the last decade. In this chapter, we first introduce the protein structure prediction problem and highlight some of the important progress in the field of protein structure prediction. Next, we discuss recent methods for the prediction of super-secondary structures. Finally, we discuss applications of super-secondary structure prediction in structure prediction/analysis of proteins. We also discuss prediction of protein structures that are composed of simple super-secondary structure repeats and protein structures that are composed of complex super-secondary structure repeats. Finally, we also discuss the recent trends in the field.
    138 schema:editor N8d34ac5fc6974d0ba5cc800275794925
    139 schema:genre chapter
    140 schema:inLanguage en
    141 schema:isAccessibleForFree false
    142 schema:isPartOf N298556365a094a468a3907e5087e37c6
    143 schema:name Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction.
    144 schema:pagination 15-45
    145 schema:productId N1512b8aec5ed495199071be072df79be
    146 N24ce60b6dd9145269f727fc4b312e6ca
    147 N6eeeb4a96f464ce78543cc9f25e76b98
    148 schema:publisher Nbd895503907a433e8513b3f615ab1817
    149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182582
    150 https://doi.org/10.1007/978-1-4939-9161-7_2
    151 schema:sdDatePublished 2019-04-16T09:37
    152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    153 schema:sdPublisher N462f1f02b21d4db0a0f6ce0932ecf767
    154 schema:url http://link.springer.com/10.1007/978-1-4939-9161-7_2
    155 sgo:license sg:explorer/license/
    156 sgo:sdDataset chapters
    157 rdf:type schema:Chapter
    158 N1512b8aec5ed495199071be072df79be schema:name pubmed_id
    159 schema:value 30945212
    160 rdf:type schema:PropertyValue
    161 N19ae4fa0f4b74c918a0d27959d83fdd8 rdf:first N49cc487b0d3c44509d77e06ea561f7fc
    162 rdf:rest N2d3c9e130a2b4aabae12f8b4bdecaee1
    163 N24ce60b6dd9145269f727fc4b312e6ca schema:name doi
    164 schema:value 10.1007/978-1-4939-9161-7_2
    165 rdf:type schema:PropertyValue
    166 N28080b5e494a499db6faa60fcb4666d7 schema:familyName Kister
    167 schema:givenName Alexander E.
    168 rdf:type schema:Person
    169 N298556365a094a468a3907e5087e37c6 schema:isbn 978-1-4939-9160-0
    170 978-1-4939-9161-7
    171 schema:name Protein Supersecondary Structures
    172 rdf:type schema:Book
    173 N2d3c9e130a2b4aabae12f8b4bdecaee1 rdf:first N8dcc0476f2c54167ab2d82240e6336bc
    174 rdf:rest N542a10cff8ae4243877b52acbd4a5e7a
    175 N462f1f02b21d4db0a0f6ce0932ecf767 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 N49cc487b0d3c44509d77e06ea561f7fc schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    178 schema:familyName MacCarthy
    179 schema:givenName Elijah
    180 rdf:type schema:Person
    181 N542a10cff8ae4243877b52acbd4a5e7a rdf:first Nf5988f96ad014890b0c865ced5e08c4e
    182 rdf:rest rdf:nil
    183 N6eeeb4a96f464ce78543cc9f25e76b98 schema:name dimensions_id
    184 schema:value pub.1113182582
    185 rdf:type schema:PropertyValue
    186 N8d34ac5fc6974d0ba5cc800275794925 rdf:first N28080b5e494a499db6faa60fcb4666d7
    187 rdf:rest rdf:nil
    188 N8dcc0476f2c54167ab2d82240e6336bc schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    189 schema:familyName Perry
    190 schema:givenName Derrick
    191 rdf:type schema:Person
    192 Nbd895503907a433e8513b3f615ab1817 schema:location New York, NY
    193 schema:name Springer New York
    194 rdf:type schema:Organisation
    195 Nf5988f96ad014890b0c865ced5e08c4e schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    196 schema:familyName Kc
    197 schema:givenName Dukka B
    198 rdf:type schema:Person
    199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Biological Sciences
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Biochemistry and Cell Biology
    204 rdf:type schema:DefinedTerm
    205 sg:pub.10.1007/978-1-62703-065-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042455302
    206 https://doi.org/10.1007/978-1-62703-065-6_5
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10858-009-9333-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037424361
    209 https://doi.org/10.1007/s10858-009-9333-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10858-012-9602-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010096083
    212 https://doi.org/10.1007/s10858-012-9602-0
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s10858-013-9741-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029729036
    215 https://doi.org/10.1007/s10858-013-9741-y
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s10858-014-9863-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053181007
    218 https://doi.org/10.1007/s10858-014-9863-x
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/301540a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025735061
    221 https://doi.org/10.1038/301540a0
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nmeth.1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098509
    224 https://doi.org/10.1038/nmeth.1818
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nprot.2010.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999469
    227 https://doi.org/10.1038/nprot.2010.5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/srep18962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036395831
    230 https://doi.org/10.1038/srep18962
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/srep43318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131299
    233 https://doi.org/10.1038/srep43318
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2105-6-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012884653
    236 https://doi.org/10.1186/1471-2105-6-202
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1186/1471-2105-6-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009289640
    239 https://doi.org/10.1186/1471-2105-6-21
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1186/1471-2105-6-s4-s8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029696227
    242 https://doi.org/10.1186/1471-2105-6-s4-s8
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1186/1471-2105-9-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371509
    245 https://doi.org/10.1186/1471-2105-9-40
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1471-2164-13-s2-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049374696
    248 https://doi.org/10.1186/1471-2164-13-s2-s5
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1472-6807-5-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736977
    251 https://doi.org/10.1186/1472-6807-5-17
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1002/(sici)1097-0134(1997)1+<185::aid-prot24>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1013110631
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<313::aid-prot5>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046219270
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1002/0471250953.bi0506s47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000988724
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1002/bip.360221211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206155
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1002/jcc.21080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006253876
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1002/jcc.21616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033184342
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1002/pro.2893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036768378
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1002/pro.3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323856
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1002/pro.5560060606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153185
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1002/prot.10304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004050377
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1002/prot.10542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012787161
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1002/prot.10543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030564444
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1002/prot.10589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772351
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1002/prot.1171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035306466
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1002/prot.21654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028557855
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1002/prot.21764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042070753
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1002/prot.21945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027804875
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1002/prot.22118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039199790
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1002/prot.23111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010825396
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1002/prot.23182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000999122
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1002/prot.24105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037273117
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1002/prot.24179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036904106
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1002/prot.24536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676037
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1002/prot.24703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043779289
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1002/prot.24918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051644844
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1002/prot.340030202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018753713
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1002/prot.340060105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000678646
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1002/prot.340230412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052245066
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1006/jmbi.1993.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443070
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1006/jmbi.1997.0959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011896927
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1006/jsbi.2001.4392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044174046
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1016/0022-2836(69)90487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011839241
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1016/0022-2836(77)90207-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544613
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1016/j.compbiolchem.2008.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053088201
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1016/j.compbiolchem.2014.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049155330
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1016/j.csbj.2017.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083411573
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1016/j.jsb.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022519099
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1016/j.jtbi.2015.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004980132
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1016/j.jtbi.2016.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248017
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1016/j.sbi.2005.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898990
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1016/j.sbi.2006.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036613571
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1016/j.sbi.2008.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045669470
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1016/j.sbi.2017.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085144187
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1016/j.sbi.2018.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101561503
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1016/j.sjbs.2015.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580465
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1016/j.sjbs.2016.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052918609
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1016/j.str.2009.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024310759
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1016/j.str.2010.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011650175
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1016/j.str.2013.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014668211
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1016/j.str.2017.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083849172
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1016/s0076-6879(03)74020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027914988
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1016/s0076-6879(04)83004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026092698
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1016/s0958-1669(96)80117-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010971474
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1016/s0969-2126(97)00260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608197
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1021/sb300028q schema:sameAs https://app.dimensions.ai/details/publication/pub.1041314400
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1039/c4mb00569d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026563351
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1039/c5mb00119f schema:sameAs https://app.dimensions.ai/details/publication/pub.1025963133
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1073/pnas.0305695101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028755639
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1073/pnas.1120036109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032203559
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1073/pnas.1607178113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037564909
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1073/pnas.162376199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049651438
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1073/pnas.2034522100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045368344
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.1073/pnas.47.9.1309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001035444
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.1073/pnas.91.10.4436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010770066
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.1073/pnas.96.10.5482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048195138
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.1093/bib/bbv047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413094
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.1093/bib/bbw070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413169
    390 rdf:type schema:CreativeWork
    391 https://doi.org/10.1093/bib/bbw129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413220
    392 rdf:type schema:CreativeWork
    393 https://doi.org/10.1093/bioinformatics/13.3.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000502198
    394 rdf:type schema:CreativeWork
    395 https://doi.org/10.1093/bioinformatics/15.12.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017546918
    396 rdf:type schema:CreativeWork
    397 https://doi.org/10.1093/bioinformatics/btg124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014639729
    398 rdf:type schema:CreativeWork
    399 https://doi.org/10.1093/bioinformatics/bth367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730157
    400 rdf:type schema:CreativeWork
    401 https://doi.org/10.1093/bioinformatics/bti125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015432789
    402 rdf:type schema:CreativeWork
    403 https://doi.org/10.1093/bioinformatics/bti575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021982817
    404 rdf:type schema:CreativeWork
    405 https://doi.org/10.1093/bioinformatics/btl353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049630530
    406 rdf:type schema:CreativeWork
    407 https://doi.org/10.1093/bioinformatics/btr299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027880064
    408 rdf:type schema:CreativeWork
    409 https://doi.org/10.1093/bioinformatics/btr350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002924349
    410 rdf:type schema:CreativeWork
    411 https://doi.org/10.1093/bioinformatics/btr541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011924374
    412 rdf:type schema:CreativeWork
    413 https://doi.org/10.1093/bioinformatics/btr638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011732715
    414 rdf:type schema:CreativeWork
    415 https://doi.org/10.1093/bioinformatics/bts648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053249805
    416 rdf:type schema:CreativeWork
    417 https://doi.org/10.1093/bioinformatics/bts728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053201009
    418 rdf:type schema:CreativeWork
    419 https://doi.org/10.1093/bioinformatics/btu700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009265854
    420 rdf:type schema:CreativeWork
    421 https://doi.org/10.1093/bioinformatics/btx551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091479726
    422 rdf:type schema:CreativeWork
    423 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    424 rdf:type schema:CreativeWork
    425 https://doi.org/10.1093/nar/gkg543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039716879
    426 rdf:type schema:CreativeWork
    427 https://doi.org/10.1093/nar/gki588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052745330
    428 rdf:type schema:CreativeWork
    429 https://doi.org/10.1093/nar/gkl205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014655755
    430 rdf:type schema:CreativeWork
    431 https://doi.org/10.1093/nar/gkm251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050292361
    432 rdf:type schema:CreativeWork
    433 https://doi.org/10.1093/nar/gkm993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012339407
    434 rdf:type schema:CreativeWork
    435 https://doi.org/10.1093/nar/gkn721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013742279
    436 rdf:type schema:CreativeWork
    437 https://doi.org/10.1093/nar/gkq1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045308353
    438 rdf:type schema:CreativeWork
    439 https://doi.org/10.1093/nar/gkt1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500366
    440 rdf:type schema:CreativeWork
    441 https://doi.org/10.1093/nar/gkt1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033991936
    442 rdf:type schema:CreativeWork
    443 https://doi.org/10.1093/nar/gku364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044471317
    444 rdf:type schema:CreativeWork
    445 https://doi.org/10.1093/nar/gkw1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006859681
    446 rdf:type schema:CreativeWork
    447 https://doi.org/10.1093/protein/12.2.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023574386
    448 rdf:type schema:CreativeWork
    449 https://doi.org/10.1093/protein/15.5.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037926210
    450 rdf:type schema:CreativeWork
    451 https://doi.org/10.1099/0022-1317-71-12-3075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060357433
    452 rdf:type schema:CreativeWork
    453 https://doi.org/10.1110/ps.03494504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001450144
    454 rdf:type schema:CreativeWork
    455 https://doi.org/10.1126/science.1065659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831777
    456 rdf:type schema:CreativeWork
    457 https://doi.org/10.1126/science.1113801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452308
    458 rdf:type schema:CreativeWork
    459 https://doi.org/10.1126/science.181.4096.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062507831
    460 rdf:type schema:CreativeWork
    461 https://doi.org/10.1126/science.1853201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062510404
    462 rdf:type schema:CreativeWork
    463 https://doi.org/10.1142/s1793524518500468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101640747
    464 rdf:type schema:CreativeWork
    465 https://doi.org/10.1371/journal.pcbi.1000750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036131182
    466 rdf:type schema:CreativeWork
    467 https://doi.org/10.1371/journal.pcbi.1004419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030805243
    468 rdf:type schema:CreativeWork
    469 https://doi.org/10.1371/journal.pone.0023294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695920
    470 rdf:type schema:CreativeWork
    471 https://doi.org/10.1371/journal.pone.0080493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007431607
    472 rdf:type schema:CreativeWork
    473 https://doi.org/10.1371/journal.pone.0092197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006157910
    474 rdf:type schema:CreativeWork
    475 https://doi.org/10.1371/journal.pone.0139280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038294406
    476 rdf:type schema:CreativeWork
    477 https://doi.org/10.1529/biophysj.107.109959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045006319
    478 rdf:type schema:CreativeWork
    479 https://doi.org/10.2174/092986610791760333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069158563
    480 rdf:type schema:CreativeWork
    481 https://doi.org/10.5483/bmbrep.2011.44.2.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029706916
    482 rdf:type schema:CreativeWork
    483 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
    484 schema:name Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA.
    485 Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA. dbkc@ncat.edu.
    486 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...