Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Sarah Creed , Matthew McKenzie

ABSTRACT

The mitochondrial membrane potential (Δψm) drives the generation of ATP by mitochondria. Interestingly, Δψm is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically accumulate in the mitochondria of cancer cells with high Δψm. As such, the assessment of Δψm can provide very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In addition, the measurement of Δψm can also be used to test the ability of novel anticancer therapies to disrupt mitochondrial metabolism and cause cell death.Here, we outline two methods for assessing Δψm in cancer cells using confocal microscopy and the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we describe a technique to quantitatively measure Δψm, which can be used to compare Δψm between different cell types. In the second protocol, we describe a technique for assessing changes to Δψm over time, which can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating mitochondrial function. More... »

PAGES

69-76

References to SciGraph publications

Book

TITLE

Cancer Metabolism

ISBN

978-1-4939-9026-9
978-1-4939-9027-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_5

DOI

http://dx.doi.org/10.1007/978-1-4939-9027-6_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111933670

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30725451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hudson Institute of Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.452824.d", 
          "name": [
            "Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, VIC, Australia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Creed", 
        "givenName": "Sarah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deakin University", 
          "id": "https://www.grid.ac/institutes/grid.1021.2", 
          "name": [
            "Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia. m.mckenzie@deakin.edu.au.", 
            "Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia. m.mckenzie@deakin.edu.au.", 
            "School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia. m.mckenzie@deakin.edu.au."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKenzie", 
        "givenName": "Matthew", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2013.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001289172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m704158200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003718122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4889(98)00088-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012136828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017271224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000113610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022207528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(03)61019-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022610074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038624311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5407.1482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039626795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2006.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042406860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2006.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042406860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10689-014-9757-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045940840", 
          "https://doi.org/10.1007/s10689-014-9757-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1300874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050064551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1471-4159.1999.0730220.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052747364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074584315", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079087145", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "The mitochondrial membrane potential (\u0394\u03c8m) drives the generation of ATP by mitochondria. Interestingly, \u0394\u03c8m is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically accumulate in the mitochondria of cancer cells with high \u0394\u03c8m. As such, the assessment of \u0394\u03c8m can provide very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In addition, the measurement of \u0394\u03c8m can also be used to test the ability of novel anticancer therapies to disrupt mitochondrial metabolism and cause cell death.Here, we outline two methods for assessing \u0394\u03c8m in cancer cells using confocal microscopy and the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we describe a technique to quantitatively measure \u0394\u03c8m, which can be used to compare \u0394\u03c8m between different cell types. In the second protocol, we describe a technique for assessing changes to \u0394\u03c8m over time, which can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating mitochondrial function.", 
    "editor": [
      {
        "familyName": "Haznadar", 
        "givenName": "Majda", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-9027-6_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-9026-9", 
        "978-1-4939-9027-6"
      ], 
      "name": "Cancer Metabolism", 
      "type": "Book"
    }, 
    "name": "Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM).", 
    "pagination": "69-76", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30725451"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111933670"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-9027-6_5"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-9027-6_5", 
      "https://app.dimensions.ai/details/publication/pub.1111933670"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99316_00000002.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-9027-6_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_5'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-9027-6_5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N9158868759dd4d1986ae34241fc218e1
4 schema:citation sg:pub.10.1007/s10689-014-9757-9
5 https://app.dimensions.ai/details/publication/pub.1074584315
6 https://app.dimensions.ai/details/publication/pub.1079087145
7 https://doi.org/10.1002/ijc.25944
8 https://doi.org/10.1016/j.ccr.2006.10.020
9 https://doi.org/10.1016/j.freeradbiomed.2013.05.004
10 https://doi.org/10.1016/s0076-6879(03)61019-0
11 https://doi.org/10.1016/s0167-4889(98)00088-3
12 https://doi.org/10.1046/j.1471-4159.1999.0730220.x
13 https://doi.org/10.1056/nejmoa1300874
14 https://doi.org/10.1074/jbc.m704158200
15 https://doi.org/10.1126/science.283.5407.1482
16 https://doi.org/10.1371/journal.pone.0154371
17 https://doi.org/10.18632/oncotarget.5260
18 https://doi.org/10.2144/000113610
19 schema:datePublished 2019
20 schema:datePublishedReg 2019-01-01
21 schema:description The mitochondrial membrane potential (Δψ<sub>m</sub>) drives the generation of ATP by mitochondria. Interestingly, Δψ<sub>m</sub> is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically accumulate in the mitochondria of cancer cells with high Δψ<sub>m</sub>. As such, the assessment of Δψ<sub>m</sub> can provide very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In addition, the measurement of Δψ<sub>m</sub> can also be used to test the ability of novel anticancer therapies to disrupt mitochondrial metabolism and cause cell death.Here, we outline two methods for assessing Δψ<sub>m</sub> in cancer cells using confocal microscopy and the potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we describe a technique to quantitatively measure Δψ<sub>m</sub>, which can be used to compare Δψ<sub>m</sub> between different cell types. In the second protocol, we describe a technique for assessing changes to Δψ<sub>m</sub> over time, which can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating mitochondrial function.
22 schema:editor Nf3003f9bb3474b7298e86f4bda8db5c5
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Na5d7996749b147aaa6fc6b05285d4003
27 schema:name Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM).
28 schema:pagination 69-76
29 schema:productId N75ee0a5e3c9a4f4889d6e9684b5946f5
30 Nb389c70b2ac64377945a2f5417892a03
31 Ncd7f66ea2e8841fcb74dc970bd33bdba
32 schema:publisher N649755903aab497da7ae6f13a0a923be
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111933670
34 https://doi.org/10.1007/978-1-4939-9027-6_5
35 schema:sdDatePublished 2019-04-16T07:37
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N6eee7dfc963142ba978af763cf509ade
38 schema:url http://link.springer.com/10.1007/978-1-4939-9027-6_5
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N3605642fb9a047959ada0c6fcaae3c81 schema:familyName Haznadar
43 schema:givenName Majda
44 rdf:type schema:Person
45 N5bb57877e0d844ea950f44889c546b47 schema:affiliation https://www.grid.ac/institutes/grid.1021.2
46 schema:familyName McKenzie
47 schema:givenName Matthew
48 rdf:type schema:Person
49 N649755903aab497da7ae6f13a0a923be schema:location New York, NY
50 schema:name Springer New York
51 rdf:type schema:Organisation
52 N6e32c34f5b6947f3ab15f7eb75b3904b schema:affiliation https://www.grid.ac/institutes/grid.452824.d
53 schema:familyName Creed
54 schema:givenName Sarah
55 rdf:type schema:Person
56 N6eee7dfc963142ba978af763cf509ade schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N75ee0a5e3c9a4f4889d6e9684b5946f5 schema:name pubmed_id
59 schema:value 30725451
60 rdf:type schema:PropertyValue
61 N9158868759dd4d1986ae34241fc218e1 rdf:first N6e32c34f5b6947f3ab15f7eb75b3904b
62 rdf:rest Na01fca48e5bc4d3cb6655278dcec93ae
63 Na01fca48e5bc4d3cb6655278dcec93ae rdf:first N5bb57877e0d844ea950f44889c546b47
64 rdf:rest rdf:nil
65 Na5d7996749b147aaa6fc6b05285d4003 schema:isbn 978-1-4939-9026-9
66 978-1-4939-9027-6
67 schema:name Cancer Metabolism
68 rdf:type schema:Book
69 Nb389c70b2ac64377945a2f5417892a03 schema:name dimensions_id
70 schema:value pub.1111933670
71 rdf:type schema:PropertyValue
72 Ncd7f66ea2e8841fcb74dc970bd33bdba schema:name doi
73 schema:value 10.1007/978-1-4939-9027-6_5
74 rdf:type schema:PropertyValue
75 Nf3003f9bb3474b7298e86f4bda8db5c5 rdf:first N3605642fb9a047959ada0c6fcaae3c81
76 rdf:rest rdf:nil
77 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
78 schema:name Biological Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
81 schema:name Biochemistry and Cell Biology
82 rdf:type schema:DefinedTerm
83 sg:pub.10.1007/s10689-014-9757-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045940840
84 https://doi.org/10.1007/s10689-014-9757-9
85 rdf:type schema:CreativeWork
86 https://app.dimensions.ai/details/publication/pub.1074584315 schema:CreativeWork
87 https://app.dimensions.ai/details/publication/pub.1079087145 schema:CreativeWork
88 https://doi.org/10.1002/ijc.25944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271224
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.ccr.2006.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042406860
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.freeradbiomed.2013.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001289172
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0076-6879(03)61019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610074
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0167-4889(98)00088-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012136828
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1046/j.1471-4159.1999.0730220.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052747364
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1056/nejmoa1300874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050064551
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1074/jbc.m704158200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003718122
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1126/science.283.5407.1482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039626795
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1371/journal.pone.0154371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038624311
107 rdf:type schema:CreativeWork
108 https://doi.org/10.18632/oncotarget.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010487880
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2144/000113610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022207528
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.1021.2 schema:alternateName Deakin University
113 schema:name Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia. m.mckenzie@deakin.edu.au.
114 Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia. m.mckenzie@deakin.edu.au.
115 School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia. m.mckenzie@deakin.edu.au.
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.452824.d schema:alternateName Hudson Institute of Medical Research
118 schema:name Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, VIC, Australia.
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...