Compositional Analysis of the Human Microbiome in Cancer Research View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-02-07

AUTHORS

Elisa Morales , Jun Chen , K. Leigh Greathouse

ABSTRACT

Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis. More... »

PAGES

299-335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_16

DOI

http://dx.doi.org/10.1007/978-1-4939-9027-6_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111933681

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30725462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Microbiome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.252890.4", 
          "name": [
            "Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morales", 
        "givenName": "Elisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.252890.4", 
          "name": [
            "Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greathouse", 
        "givenName": "K. Leigh", 
        "id": "sg:person.0737647506.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737647506.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-02-07", 
    "datePublishedReg": "2019-02-07", 
    "description": "Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis.", 
    "editor": [
      {
        "familyName": "Haznadar", 
        "givenName": "Majda", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-9027-6_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-9026-9", 
        "978-1-4939-9027-6"
      ], 
      "name": "Cancer Metabolism", 
      "type": "Book"
    }, 
    "keywords": [
      "inflammatory bowel disease", 
      "gut microbial composition", 
      "diabetes mellitus", 
      "bowel disease", 
      "autoimmune disorders", 
      "exclusion criteria", 
      "study design", 
      "cancer research", 
      "disease", 
      "human microbiome", 
      "microbial composition", 
      "mellitus", 
      "colitis", 
      "obesity", 
      "cancer", 
      "microbiome research", 
      "disorders", 
      "careful selection", 
      "best strategy", 
      "microbiome", 
      "participants", 
      "years", 
      "available information", 
      "criteria", 
      "microbial structure", 
      "analysis", 
      "function", 
      "inclusion", 
      "strategies", 
      "research", 
      "collection", 
      "information", 
      "selection", 
      "microbial collections", 
      "method", 
      "composition", 
      "design", 
      "compositional analysis", 
      "methodology", 
      "structure"
    ], 
    "name": "Compositional Analysis of the Human Microbiome in Cancer Research", 
    "pagination": "299-335", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111933681"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-9027-6_16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30725462"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-9027-6_16", 
      "https://app.dimensions.ai/details/publication/pub.1111933681"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_177.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-9027-6_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-9027-6_16'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-9027-6_16 schema:about N0033e0b9fff04dec83145f91a4561ff6
2 N188efdff2fd24365a18615abf67e1078
3 N20ea36eb7b0d44dda674456683fecb0c
4 N27c3c675d2f54d9fa492de88373044c3
5 N65bc32967c064eadb874e2ddcc577c2f
6 N751fb05906e94d8f9095f0e5487b5d9a
7 N75e32b1f36fc428f88d52c8ea01f8d5a
8 N89464f73b8d940f8b985a249f12c0e21
9 N97e54739fd024811a9610bdae9554229
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author N36e1bf38a5634c3bb5286c6a7848b7eb
13 schema:datePublished 2019-02-07
14 schema:datePublishedReg 2019-02-07
15 schema:description Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis.
16 schema:editor Nd88418f22c524f0bb8d12fcaba59656a
17 schema:genre chapter
18 schema:isAccessibleForFree false
19 schema:isPartOf N086e9f9aabad49e4a7a7246529298826
20 schema:keywords analysis
21 autoimmune disorders
22 available information
23 best strategy
24 bowel disease
25 cancer
26 cancer research
27 careful selection
28 colitis
29 collection
30 composition
31 compositional analysis
32 criteria
33 design
34 diabetes mellitus
35 disease
36 disorders
37 exclusion criteria
38 function
39 gut microbial composition
40 human microbiome
41 inclusion
42 inflammatory bowel disease
43 information
44 mellitus
45 method
46 methodology
47 microbial collections
48 microbial composition
49 microbial structure
50 microbiome
51 microbiome research
52 obesity
53 participants
54 research
55 selection
56 strategies
57 structure
58 study design
59 years
60 schema:name Compositional Analysis of the Human Microbiome in Cancer Research
61 schema:pagination 299-335
62 schema:productId N840a502376504d3f932c9e8adfa0c4b7
63 N9e1bef749fd34890a442e66ba2b3312d
64 Nf96132e30f8b4fb99dbbb77bb3a8826e
65 schema:publisher Nb19375a35b3c4cddb865cba170d377bc
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111933681
67 https://doi.org/10.1007/978-1-4939-9027-6_16
68 schema:sdDatePublished 2022-09-02T16:11
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N4266a905fbe84be79d0db76c33e101c7
71 schema:url https://doi.org/10.1007/978-1-4939-9027-6_16
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N0033e0b9fff04dec83145f91a4561ff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Metagenome
77 rdf:type schema:DefinedTerm
78 N086e9f9aabad49e4a7a7246529298826 schema:isbn 978-1-4939-9026-9
79 978-1-4939-9027-6
80 schema:name Cancer Metabolism
81 rdf:type schema:Book
82 N1722b614155a48298e080c5b847d0e30 rdf:first sg:person.01023412627.52
83 rdf:rest Nf7ac990e78b940c89518b3d8cde4824b
84 N188efdff2fd24365a18615abf67e1078 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 N20ea36eb7b0d44dda674456683fecb0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Research
89 rdf:type schema:DefinedTerm
90 N27c3c675d2f54d9fa492de88373044c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Biological Evolution
92 rdf:type schema:DefinedTerm
93 N36e1bf38a5634c3bb5286c6a7848b7eb rdf:first N9448a046ed3f4ae4a37b3241b4975620
94 rdf:rest N1722b614155a48298e080c5b847d0e30
95 N4266a905fbe84be79d0db76c33e101c7 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N65bc32967c064eadb874e2ddcc577c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name RNA, Ribosomal, 16S
99 rdf:type schema:DefinedTerm
100 N751fb05906e94d8f9095f0e5487b5d9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Gastrointestinal Microbiome
102 rdf:type schema:DefinedTerm
103 N75e32b1f36fc428f88d52c8ea01f8d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Metagenomics
105 rdf:type schema:DefinedTerm
106 N840a502376504d3f932c9e8adfa0c4b7 schema:name dimensions_id
107 schema:value pub.1111933681
108 rdf:type schema:PropertyValue
109 N89464f73b8d940f8b985a249f12c0e21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Microbiota
111 rdf:type schema:DefinedTerm
112 N9448a046ed3f4ae4a37b3241b4975620 schema:affiliation grid-institutes:grid.252890.4
113 schema:familyName Morales
114 schema:givenName Elisa
115 rdf:type schema:Person
116 N97e54739fd024811a9610bdae9554229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Polymerase Chain Reaction
118 rdf:type schema:DefinedTerm
119 N9e1bef749fd34890a442e66ba2b3312d schema:name pubmed_id
120 schema:value 30725462
121 rdf:type schema:PropertyValue
122 Nb19375a35b3c4cddb865cba170d377bc schema:name Springer Nature
123 rdf:type schema:Organisation
124 Nd88418f22c524f0bb8d12fcaba59656a rdf:first Nd9fa2e087f31489eab235298c8bf2758
125 rdf:rest rdf:nil
126 Nd9fa2e087f31489eab235298c8bf2758 schema:familyName Haznadar
127 schema:givenName Majda
128 rdf:type schema:Person
129 Nf7ac990e78b940c89518b3d8cde4824b rdf:first sg:person.0737647506.50
130 rdf:rest rdf:nil
131 Nf96132e30f8b4fb99dbbb77bb3a8826e schema:name doi
132 schema:value 10.1007/978-1-4939-9027-6_16
133 rdf:type schema:PropertyValue
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
138 schema:name Microbiology
139 rdf:type schema:DefinedTerm
140 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
141 schema:familyName Chen
142 schema:givenName Jun
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
144 rdf:type schema:Person
145 sg:person.0737647506.50 schema:affiliation grid-institutes:grid.252890.4
146 schema:familyName Greathouse
147 schema:givenName K. Leigh
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737647506.50
149 rdf:type schema:Person
150 grid-institutes:grid.252890.4 schema:alternateName Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
151 schema:name Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
152 rdf:type schema:Organization
153 grid-institutes:grid.66875.3a schema:alternateName Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
154 schema:name Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...