Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Kai Zhao , Hon-Cheong So

ABSTRACT

The cost of new drug development has been increasing, and repurposing known medications for new indications serves as an important way to hasten drug discovery. One promising approach to drug repositioning is to take advantage of machine learning (ML) algorithms to learn patterns in biological data related to drugs and then link them up to the potential of treating specific diseases. Here we give an overview of the general principles and different types of ML algorithms, as well as common approaches to evaluating predictive performances, with reference to the application of ML algorithms to predict repurposing opportunities using drug expression data as features. We will highlight common issues and caveats when applying such models to repositioning. We also introduce resources of drug expression data and highlight recent studies employing such an approach to repositioning. More... »

PAGES

219-237

References to SciGraph publications

Book

TITLE

Computational Methods for Drug Repurposing

ISBN

978-1-4939-8954-6
978-1-4939-8955-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-8955-3_13

DOI

http://dx.doi.org/10.1007/978-1-4939-8955-3_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110579138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30547445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.10784.3a", 
          "name": [
            "School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kunming Institute of Zoology", 
          "id": "https://www.grid.ac/institutes/grid.419010.d", 
          "name": [
            "School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong. hcso@cuhk.edu.hk.", 
            "KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology, Kunming, China. hcso@cuhk.edu.hk."
          ], 
          "type": "Organization"
        }, 
        "familyName": "So", 
        "givenName": "Hon-Cheong", 
        "id": "sg:person.01263714121.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263714121.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/bbr013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000546981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00527.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003327113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2016.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004326352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2016.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004326352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcss.1997.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004338842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.molpharmaceut.6b00248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009284150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-2946-5-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845049", 
          "https://doi.org/10.1186/1758-2946-5-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013321903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wsbm.1337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014517480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432622", 
          "https://doi.org/10.1007/0-387-29362-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025494039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013203451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030645893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2014.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034042711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034791610", 
          "https://doi.org/10.1186/1471-2105-7-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2011.00771.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035785610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2016.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042169659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2016.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042169659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044216575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17460441.2016.1201262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044591955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0078518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045171487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046546824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aos1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064394002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v033.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-07705-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090943001", 
          "https://doi.org/10.1038/s41598-017-07705-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-07705-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090943001", 
          "https://doi.org/10.1038/s41598-017-07705-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091208374", 
          "https://doi.org/10.1038/nn.4618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091208374", 
          "https://doi.org/10.1038/nn.4618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxlet.2017.07.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092503061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2017.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093089242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099839427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2018.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100624056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2018.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100624056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2017.0387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103153059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2017.0387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103153059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2017.0387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103153059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1803294115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103412948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1803294115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103412948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2018.2856535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105605300"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "The cost of new drug development has been increasing, and repurposing known medications for new indications serves as an important way to hasten drug discovery. One promising approach to drug repositioning is to take advantage of machine learning (ML) algorithms to learn patterns in biological data related to drugs and then link them up to the potential of treating specific diseases. Here we give an overview of the general principles and different types of ML algorithms, as well as common approaches to evaluating predictive performances, with reference to the application of ML algorithms to predict repurposing opportunities using drug expression data as features. We will highlight common issues and caveats when applying such models to repositioning. We also introduce resources of drug expression data and highlight recent studies employing such an approach to repositioning.", 
    "editor": [
      {
        "familyName": "Vanhaelen", 
        "givenName": "Quentin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-8955-3_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-8954-6", 
        "978-1-4939-8955-3"
      ], 
      "name": "Computational Methods for Drug Repurposing", 
      "type": "Book"
    }, 
    "name": "Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.", 
    "pagination": "219-237", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-8955-3_13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110579138"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30547445"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-8955-3_13", 
      "https://app.dimensions.ai/details/publication/pub.1110579138"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000002.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-8955-3_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8955-3_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8955-3_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8955-3_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8955-3_13'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      23 PREDICATES      62 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-8955-3_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4c8642e06d3c4887b9e673c83ad76ec9
4 schema:citation sg:pub.10.1007/0-387-29362-0_23
5 sg:pub.10.1007/978-1-4614-7138-7
6 sg:pub.10.1007/bf00994018
7 sg:pub.10.1023/a:1010933404324
8 sg:pub.10.1038/nn.4618
9 sg:pub.10.1038/s41598-017-07705-8
10 sg:pub.10.1186/1471-2105-7-91
11 sg:pub.10.1186/1758-2946-5-30
12 https://app.dimensions.ai/details/publication/pub.1044216575
13 https://doi.org/10.1002/wsbm.1337
14 https://doi.org/10.1006/jcss.1997.1504
15 https://doi.org/10.1016/j.cell.2017.10.049
16 https://doi.org/10.1016/j.drudis.2016.09.019
17 https://doi.org/10.1016/j.drudis.2018.01.039
18 https://doi.org/10.1016/j.jbi.2014.03.014
19 https://doi.org/10.1016/j.jhealeco.2016.01.012
20 https://doi.org/10.1016/j.toxlet.2017.07.175
21 https://doi.org/10.1021/acs.molpharmaceut.6b00248
22 https://doi.org/10.1073/pnas.1803294115
23 https://doi.org/10.1080/17460441.2016.1201262
24 https://doi.org/10.1093/bib/bbr013
25 https://doi.org/10.1093/bioinformatics/btx806
26 https://doi.org/10.1098/rsif.2017.0387
27 https://doi.org/10.1109/jbhi.2018.2856535
28 https://doi.org/10.1109/tpami.2013.50
29 https://doi.org/10.1111/j.1467-9868.2005.00527.x
30 https://doi.org/10.1111/j.1467-9868.2011.00771.x
31 https://doi.org/10.1126/science.1132939
32 https://doi.org/10.1136/amiajnl-2012-001431
33 https://doi.org/10.1145/1143844.1143874
34 https://doi.org/10.1214/13-aos1175
35 https://doi.org/10.1214/aos/1013203451
36 https://doi.org/10.1371/journal.pone.0078518
37 https://doi.org/10.1613/jair.953
38 https://doi.org/10.18637/jss.v033.i01
39 schema:datePublished 2019
40 schema:datePublishedReg 2019-01-01
41 schema:description The cost of new drug development has been increasing, and repurposing known medications for new indications serves as an important way to hasten drug discovery. One promising approach to drug repositioning is to take advantage of machine learning (ML) algorithms to learn patterns in biological data related to drugs and then link them up to the potential of treating specific diseases. Here we give an overview of the general principles and different types of ML algorithms, as well as common approaches to evaluating predictive performances, with reference to the application of ML algorithms to predict repurposing opportunities using drug expression data as features. We will highlight common issues and caveats when applying such models to repositioning. We also introduce resources of drug expression data and highlight recent studies employing such an approach to repositioning.
42 schema:editor N4f0fe472765f4a6cbc9e1fa52073cc83
43 schema:genre chapter
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N42f2ea4217e74422ab9f514c56676102
47 schema:name Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
48 schema:pagination 219-237
49 schema:productId N4e0814d53a4f46a98554e866b4f2367e
50 N64d12a10afb04b29900a29388f99b9ec
51 N86e529dba14948f8a45f4894ea512c58
52 schema:publisher N5744580fa3a14d1fbcea529feb4dc18c
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110579138
54 https://doi.org/10.1007/978-1-4939-8955-3_13
55 schema:sdDatePublished 2019-04-16T05:54
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ndeb5bc9a4a8c49cba97108be632db246
58 schema:url http://link.springer.com/10.1007/978-1-4939-8955-3_13
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N1bc40c68ddfe45be8e0ec29fdb373265 rdf:first sg:person.01263714121.63
63 rdf:rest rdf:nil
64 N42f2ea4217e74422ab9f514c56676102 schema:isbn 978-1-4939-8954-6
65 978-1-4939-8955-3
66 schema:name Computational Methods for Drug Repurposing
67 rdf:type schema:Book
68 N4c8642e06d3c4887b9e673c83ad76ec9 rdf:first N641189e199294044812c8b4514ba600b
69 rdf:rest N1bc40c68ddfe45be8e0ec29fdb373265
70 N4e0814d53a4f46a98554e866b4f2367e schema:name doi
71 schema:value 10.1007/978-1-4939-8955-3_13
72 rdf:type schema:PropertyValue
73 N4f0fe472765f4a6cbc9e1fa52073cc83 rdf:first Neebbe1430b1e49eab2397122d54dc601
74 rdf:rest rdf:nil
75 N5744580fa3a14d1fbcea529feb4dc18c schema:location New York, NY
76 schema:name Springer New York
77 rdf:type schema:Organisation
78 N641189e199294044812c8b4514ba600b schema:affiliation https://www.grid.ac/institutes/grid.10784.3a
79 schema:familyName Zhao
80 schema:givenName Kai
81 rdf:type schema:Person
82 N64d12a10afb04b29900a29388f99b9ec schema:name pubmed_id
83 schema:value 30547445
84 rdf:type schema:PropertyValue
85 N86e529dba14948f8a45f4894ea512c58 schema:name dimensions_id
86 schema:value pub.1110579138
87 rdf:type schema:PropertyValue
88 Ndeb5bc9a4a8c49cba97108be632db246 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Neebbe1430b1e49eab2397122d54dc601 schema:familyName Vanhaelen
91 schema:givenName Quentin
92 rdf:type schema:Person
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:person.01263714121.63 schema:affiliation https://www.grid.ac/institutes/grid.419010.d
100 schema:familyName So
101 schema:givenName Hon-Cheong
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263714121.63
103 rdf:type schema:Person
104 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
105 https://doi.org/10.1007/0-387-29362-0_23
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-1-4614-7138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216575
108 https://doi.org/10.1007/978-1-4614-7138-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
111 https://doi.org/10.1007/bf00994018
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
114 https://doi.org/10.1023/a:1010933404324
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nn.4618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091208374
117 https://doi.org/10.1038/nn.4618
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/s41598-017-07705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090943001
120 https://doi.org/10.1038/s41598-017-07705-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2105-7-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034791610
123 https://doi.org/10.1186/1471-2105-7-91
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1758-2946-5-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845049
126 https://doi.org/10.1186/1758-2946-5-30
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1044216575 schema:CreativeWork
129 https://doi.org/10.1002/wsbm.1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014517480
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jcss.1997.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004338842
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.cell.2017.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093089242
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.drudis.2016.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004326352
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.drudis.2018.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100624056
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jbi.2014.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034042711
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jhealeco.2016.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042169659
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.toxlet.2017.07.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092503061
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/acs.molpharmaceut.6b00248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009284150
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.1803294115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103412948
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/17460441.2016.1201262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044591955
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bib/bbr013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000546981
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/btx806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099839427
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1098/rsif.2017.0387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103153059
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/jbhi.2018.2856535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105605300
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tpami.2013.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744581
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1111/j.1467-9868.2005.00527.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003327113
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.1467-9868.2011.00771.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035785610
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.1132939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013321903
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1136/amiajnl-2012-001431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025494039
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/1143844.1143874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546824
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1214/13-aos1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394002
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0078518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045171487
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
178 rdf:type schema:CreativeWork
179 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.10784.3a schema:alternateName Chinese University of Hong Kong
182 schema:name School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.419010.d schema:alternateName Kunming Institute of Zoology
185 schema:name KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology, Kunming, China. hcso@cuhk.edu.hk.
186 School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong. hcso@cuhk.edu.hk.
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...