Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Neeraj Kumar , Arnab Mukhopadhyay

ABSTRACT

Chromatin immunoprecipitation (ChIP) coupled to quantitative real-time PCR (ChIP-qPCR) or Next-Generation Sequencing (ChIP-seq) enables us to study the dynamics of chromatin recruitment of transcription factors (TFs). The popular model system Caenorhabditis elegans has provided us with fundamental understanding of the role of Insulin/IGF-1-like signaling (IIS) in metabolism and aging. The FOXO TF DAF-16 is the major output of the pathway that regulates most of the phenotypes associated with the IIS pathway. Here, we describe a ChIP protocol to study FOXO recruitment dynamics in whole C. elegans extracts. We discuss detailed practical procedures, including optimization, growth, harvesting, formaldehyde fixation, sonication of worms, TF immunoprecipitation for further downstream processing using qPCR as well as NGS for the analysis of FOXO-bound DNA. More... »

PAGES

115-130

Book

TITLE

FOXO Transcription Factors

ISBN

978-1-4939-8899-0
978-1-4939-8900-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-8900-3_10

DOI

http://dx.doi.org/10.1007/978-1-4939-8900-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109830107

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30414149


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "All India Institute of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.413618.9", 
          "name": [
            "Department of Reproductive Biology, All India Institute of Medical Sciences (AIIMS), New Delhi, India."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Neeraj", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Immunology", 
          "id": "https://www.grid.ac/institutes/grid.19100.39", 
          "name": [
            "Molecular Aging Laboratory, National Institute of Immunology, New Delhi, India. arnab@nii.ac.in."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukhopadhyay", 
        "givenName": "Arnab", 
        "id": "sg:person.0714452277.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714452277.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006360808", 
          "https://doi.org/10.1038/ng1983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exger.2006.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008176950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008428712", 
          "https://doi.org/10.1038/ncb2720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3530-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010961432", 
          "https://doi.org/10.1007/978-1-4939-3530-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016997464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021315345", 
          "https://doi.org/10.1186/1756-0500-2-112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021315345", 
          "https://doi.org/10.1186/1756-0500-2-112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12033-009-9239-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024150845", 
          "https://doi.org/10.1007/s12033-009-9239-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12033-009-9239-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024150845", 
          "https://doi.org/10.1007/s12033-009-9239-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025574792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7600901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025574792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/88850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028361146", 
          "https://doi.org/10.1038/88850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/88850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028361146", 
          "https://doi.org/10.1038/88850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028943783", 
          "https://doi.org/10.1038/ng1723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028943783", 
          "https://doi.org/10.1038/ng1723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029201993", 
          "https://doi.org/10.1038/nprot.2008.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.r115.651679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031704681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041871160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041871160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5321506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043244506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508989102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048897037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.6282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050176143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-376-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052900821", 
          "https://doi.org/10.1007/978-1-61779-376-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/2733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070914874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/04376rv01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076979461"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Chromatin immunoprecipitation (ChIP) coupled to quantitative real-time PCR (ChIP-qPCR) or Next-Generation Sequencing (ChIP-seq) enables us to study the dynamics of chromatin recruitment of transcription factors (TFs). The popular model system Caenorhabditis elegans has provided us with fundamental understanding of the role of Insulin/IGF-1-like signaling (IIS) in metabolism and aging. The FOXO TF DAF-16 is the major output of the pathway that regulates most of the phenotypes associated with the IIS pathway. Here, we describe a ChIP protocol to study FOXO recruitment dynamics in whole C. elegans extracts. We discuss detailed practical procedures, including optimization, growth, harvesting, formaldehyde fixation, sonication of worms, TF immunoprecipitation for further downstream processing using qPCR as well as NGS for the analysis of FOXO-bound DNA.", 
    "editor": [
      {
        "familyName": "Link", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-8900-3_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-8899-0", 
        "978-1-4939-8900-3"
      ], 
      "name": "FOXO Transcription Factors", 
      "type": "Book"
    }, 
    "name": "Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters.", 
    "pagination": "115-130", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-8900-3_10"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109830107"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30414149"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-8900-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1109830107"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109487_00000002.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-8900-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8900-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8900-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8900-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-8900-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-8900-3_10 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne58b94d39a544a3395d65871fc25c5a6
4 schema:citation sg:pub.10.1007/978-1-4939-3530-7_21
5 sg:pub.10.1007/978-1-61779-376-9_6
6 sg:pub.10.1007/s12033-009-9239-8
7 sg:pub.10.1038/88850
8 sg:pub.10.1038/ncb2720
9 sg:pub.10.1038/ng1723
10 sg:pub.10.1038/ng1983
11 sg:pub.10.1038/nprot.2008.38
12 sg:pub.10.1186/1756-0500-2-112
13 https://doi.org/10.1016/j.cell.2005.02.002
14 https://doi.org/10.1016/j.exger.2006.05.020
15 https://doi.org/10.1016/j.molcel.2005.04.006
16 https://doi.org/10.1038/sj.emboj.7600901
17 https://doi.org/10.1073/pnas.0508989102
18 https://doi.org/10.1074/jbc.r115.651679
19 https://doi.org/10.1101/gr.5321506
20 https://doi.org/10.1101/pdb.prot5279
21 https://doi.org/10.18632/oncotarget.6282
22 https://doi.org/10.2144/04376rv01
23 https://doi.org/10.2741/2733
24 schema:datePublished 2019
25 schema:datePublishedReg 2019-01-01
26 schema:description Chromatin immunoprecipitation (ChIP) coupled to quantitative real-time PCR (ChIP-qPCR) or Next-Generation Sequencing (ChIP-seq) enables us to study the dynamics of chromatin recruitment of transcription factors (TFs). The popular model system Caenorhabditis elegans has provided us with fundamental understanding of the role of Insulin/IGF-1-like signaling (IIS) in metabolism and aging. The FOXO TF DAF-16 is the major output of the pathway that regulates most of the phenotypes associated with the IIS pathway. Here, we describe a ChIP protocol to study FOXO recruitment dynamics in whole C. elegans extracts. We discuss detailed practical procedures, including optimization, growth, harvesting, formaldehyde fixation, sonication of worms, TF immunoprecipitation for further downstream processing using qPCR as well as NGS for the analysis of FOXO-bound DNA.
27 schema:editor Ndd839984fdfa4eba8d9f29c5f39bbd63
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N48d1b586319c4b08a9b21c05cca2d798
32 schema:name Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters.
33 schema:pagination 115-130
34 schema:productId N526514d40b8b4ba485b02872574ceca0
35 N5bf339d31307452cb5975b81f9281c71
36 Nc456e441e0594f3cb79b1759a3757de7
37 schema:publisher N1e823214eb564379af634393c34fc08c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109830107
39 https://doi.org/10.1007/978-1-4939-8900-3_10
40 schema:sdDatePublished 2019-04-16T05:20
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N17dbca76e0f4418ab01975c19956e6c9
43 schema:url http://link.springer.com/10.1007/978-1-4939-8900-3_10
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N17dbca76e0f4418ab01975c19956e6c9 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N1e823214eb564379af634393c34fc08c schema:location New York, NY
50 schema:name Springer New York
51 rdf:type schema:Organisation
52 N23d5af7026a5419ca4c192b55a3133c2 schema:affiliation https://www.grid.ac/institutes/grid.413618.9
53 schema:familyName Kumar
54 schema:givenName Neeraj
55 rdf:type schema:Person
56 N48d1b586319c4b08a9b21c05cca2d798 schema:isbn 978-1-4939-8899-0
57 978-1-4939-8900-3
58 schema:name FOXO Transcription Factors
59 rdf:type schema:Book
60 N526514d40b8b4ba485b02872574ceca0 schema:name pubmed_id
61 schema:value 30414149
62 rdf:type schema:PropertyValue
63 N5332bbcc0c0a467c84b087b34fc52331 rdf:first sg:person.0714452277.81
64 rdf:rest rdf:nil
65 N5bf339d31307452cb5975b81f9281c71 schema:name doi
66 schema:value 10.1007/978-1-4939-8900-3_10
67 rdf:type schema:PropertyValue
68 N65f7f984ba744290a89411261eff0a9b schema:familyName Link
69 schema:givenName Wolfgang
70 rdf:type schema:Person
71 Nc456e441e0594f3cb79b1759a3757de7 schema:name dimensions_id
72 schema:value pub.1109830107
73 rdf:type schema:PropertyValue
74 Ndd839984fdfa4eba8d9f29c5f39bbd63 rdf:first N65f7f984ba744290a89411261eff0a9b
75 rdf:rest rdf:nil
76 Ne58b94d39a544a3395d65871fc25c5a6 rdf:first N23d5af7026a5419ca4c192b55a3133c2
77 rdf:rest N5332bbcc0c0a467c84b087b34fc52331
78 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biological Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
82 schema:name Genetics
83 rdf:type schema:DefinedTerm
84 sg:person.0714452277.81 schema:affiliation https://www.grid.ac/institutes/grid.19100.39
85 schema:familyName Mukhopadhyay
86 schema:givenName Arnab
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714452277.81
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4939-3530-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010961432
90 https://doi.org/10.1007/978-1-4939-3530-7_21
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-1-61779-376-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052900821
93 https://doi.org/10.1007/978-1-61779-376-9_6
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s12033-009-9239-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024150845
96 https://doi.org/10.1007/s12033-009-9239-8
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/88850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028361146
99 https://doi.org/10.1038/88850
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/ncb2720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008428712
102 https://doi.org/10.1038/ncb2720
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ng1723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028943783
105 https://doi.org/10.1038/ng1723
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/ng1983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006360808
108 https://doi.org/10.1038/ng1983
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nprot.2008.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029201993
111 https://doi.org/10.1038/nprot.2008.38
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/1756-0500-2-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021315345
114 https://doi.org/10.1186/1756-0500-2-112
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cell.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016997464
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.exger.2006.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947034
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.molcel.2005.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041871160
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1038/sj.emboj.7600901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025574792
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1073/pnas.0508989102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048897037
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1074/jbc.r115.651679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031704681
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1101/gr.5321506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043244506
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1101/pdb.prot5279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008176950
131 rdf:type schema:CreativeWork
132 https://doi.org/10.18632/oncotarget.6282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050176143
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2144/04376rv01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076979461
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2741/2733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070914874
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.19100.39 schema:alternateName National Institute of Immunology
139 schema:name Molecular Aging Laboratory, National Institute of Immunology, New Delhi, India. arnab@nii.ac.in.
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.413618.9 schema:alternateName All India Institute of Medical Sciences
142 schema:name Department of Reproductive Biology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...