Ontology type: schema:Chapter
2018
AUTHORSDarren K. Patten , Giacomo Corleone , Luca Magnani
ABSTRACTChromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become an essential tool for epigenetic scientists. ChIP-seq is used to map protein-DNA interactions and epigenetic marks such as histone modifications at the genome-wide level. Here we describe a complete ChIP-seq laboratory protocol (tailored toward processing tissue samples as well as cell lines) and the bioinformatic pipelines utilized for handling raw sequencing files through to peak calling. More... »
PAGES271-288
Epigenome Editing
ISBN
978-1-4939-7773-4
978-1-4939-7774-1
http://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15
DOIhttp://dx.doi.org/10.1007/978-1-4939-7774-1_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101394216
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/29524141
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Homerton University Hospital",
"id": "https://www.grid.ac/institutes/grid.439591.3",
"name": [
"Imperial College London",
"Homerton University Hospital"
],
"type": "Organization"
},
"familyName": "Patten",
"givenName": "Darren K.",
"id": "sg:person.01137411175.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137411175.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"Imperial College London"
],
"type": "Organization"
},
"familyName": "Corleone",
"givenName": "Giacomo",
"id": "sg:person.013216436173.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216436173.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London",
"id": "https://www.grid.ac/institutes/grid.7445.2",
"name": [
"Imperial College London"
],
"type": "Organization"
},
"familyName": "Magnani",
"givenName": "Luca",
"id": "sg:person.0767047363.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767047363.32"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.cell.2007.05.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002139821"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2012.101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003624809",
"https://doi.org/10.1038/nprot.2012.101"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymeth.2009.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003848453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymeth.2009.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003848453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymeth.2009.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003848453"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006115199",
"https://doi.org/10.1038/nrg2641"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg2641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006115199",
"https://doi.org/10.1038/nrg2641"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.1923",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006541515",
"https://doi.org/10.1038/nmeth.1923"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbv110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008929951"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/0471250953.bi1107s32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012403628"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1141319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018702276"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbq015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019203929"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbq015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019203929"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.136184.111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021823681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023014918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07829",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023938796",
"https://doi.org/10.1038/nature07829"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07829",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023938796",
"https://doi.org/10.1038/nature07829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btr092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024523915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0076-6879(02)50979-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024630464"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btt730",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025275748"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2008-9-9-r137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027608848",
"https://doi.org/10.1186/gb-2008-9-9-r137"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bib/bbs017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029766327"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gad.943102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030092845"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth1068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036304799",
"https://doi.org/10.1038/nmeth1068"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036892131"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkp1137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037112607"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35054095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037596378",
"https://doi.org/10.1038/35054095"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35054095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037596378",
"https://doi.org/10.1038/35054095"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.084830.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039898401"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.290.5500.2306",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040836033"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btu170",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042720804"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0085024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047209905"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0011471",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049857332"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056459183",
"https://doi.org/10.1038/ng569"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056459183",
"https://doi.org/10.1038/ng569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkw1134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059932075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkw1134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059932075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkw1134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059932075"
],
"type": "CreativeWork"
}
],
"datePublished": "2018",
"datePublishedReg": "2018-01-01",
"description": "Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become an essential tool for epigenetic scientists. ChIP-seq is used to map protein-DNA interactions and epigenetic marks such as histone modifications at the genome-wide level. Here we describe a complete ChIP-seq laboratory protocol (tailored toward processing tissue samples as well as cell lines) and the bioinformatic pipelines utilized for handling raw sequencing files through to peak calling.",
"editor": [
{
"familyName": "Jeltsch",
"givenName": "Albert",
"type": "Person"
},
{
"familyName": "Rots",
"givenName": "Marianne G.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4939-7774-1_15",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4939-7773-4",
"978-1-4939-7774-1"
],
"name": "Epigenome Editing",
"type": "Book"
},
"name": "Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis",
"pagination": "271-288",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4939-7774-1_15"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"28fd27109b33f7dbb9e19780413f4ff26bd0914fd3f12a84bd2b8e52e9a520b2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101394216"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"29524141"
]
}
],
"publisher": {
"location": "New York, NY",
"name": "Springer New York",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4939-7774-1_15",
"https://app.dimensions.ai/details/publication/pub.1101394216"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T19:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000383.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-1-4939-7774-1_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'
This table displays all metadata directly associated to this object as RDF triples.
187 TRIPLES
23 PREDICATES
57 URIs
21 LITERALS
9 BLANK NODES