Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Darren K. Patten , Giacomo Corleone , Luca Magnani

ABSTRACT

Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become an essential tool for epigenetic scientists. ChIP-seq is used to map protein-DNA interactions and epigenetic marks such as histone modifications at the genome-wide level. Here we describe a complete ChIP-seq laboratory protocol (tailored toward processing tissue samples as well as cell lines) and the bioinformatic pipelines utilized for handling raw sequencing files through to peak calling. More... »

PAGES

271-288

Book

TITLE

Epigenome Editing

ISBN

978-1-4939-7773-4
978-1-4939-7774-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15

DOI

http://dx.doi.org/10.1007/978-1-4939-7774-1_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101394216

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29524141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Homerton University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.439591.3", 
          "name": [
            "Imperial College London", 
            "Homerton University Hospital"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patten", 
        "givenName": "Darren K.", 
        "id": "sg:person.01137411175.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137411175.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Imperial College London"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corleone", 
        "givenName": "Giacomo", 
        "id": "sg:person.013216436173.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216436173.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Imperial College London"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnani", 
        "givenName": "Luca", 
        "id": "sg:person.0767047363.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767047363.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003624809", 
          "https://doi.org/10.1038/nprot.2012.101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003848453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003848453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003848453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006115199", 
          "https://doi.org/10.1038/nrg2641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbv110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008929951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi1107s32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012403628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018702276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136184.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021823681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024523915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(02)50979-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024630464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025275748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-9-r137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027608848", 
          "https://doi.org/10.1186/gb-2008-9-9-r137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbs017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.943102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030092845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036892131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp1137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037112607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037596378", 
          "https://doi.org/10.1038/35054095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.084830.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040836033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047209905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0011471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049857332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056459183", 
          "https://doi.org/10.1038/ng569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059932075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059932075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059932075"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become an essential tool for epigenetic scientists. ChIP-seq is used to map protein-DNA interactions and epigenetic marks such as histone modifications at the genome-wide level. Here we describe a complete ChIP-seq laboratory protocol (tailored toward processing tissue samples as well as cell lines) and the bioinformatic pipelines utilized for handling raw sequencing files through to peak calling.", 
    "editor": [
      {
        "familyName": "Jeltsch", 
        "givenName": "Albert", 
        "type": "Person"
      }, 
      {
        "familyName": "Rots", 
        "givenName": "Marianne G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-7774-1_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-7773-4", 
        "978-1-4939-7774-1"
      ], 
      "name": "Epigenome Editing", 
      "type": "Book"
    }, 
    "name": "Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis", 
    "pagination": "271-288", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-7774-1_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28fd27109b33f7dbb9e19780413f4ff26bd0914fd3f12a84bd2b8e52e9a520b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101394216"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29524141"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-7774-1_15", 
      "https://app.dimensions.ai/details/publication/pub.1101394216"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000383.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-7774-1_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7774-1_15'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      23 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-7774-1_15 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N08cb835785b5495f8e43929396c178b8
4 schema:citation sg:pub.10.1038/35054095
5 sg:pub.10.1038/nature07829
6 sg:pub.10.1038/ng569
7 sg:pub.10.1038/nmeth.1923
8 sg:pub.10.1038/nmeth1068
9 sg:pub.10.1038/nprot.2012.101
10 sg:pub.10.1038/nrg2641
11 sg:pub.10.1186/gb-2008-9-9-r137
12 https://doi.org/10.1002/0471250953.bi1107s32
13 https://doi.org/10.1016/j.cell.2007.05.009
14 https://doi.org/10.1016/j.ymeth.2009.03.001
15 https://doi.org/10.1016/s0076-6879(02)50979-4
16 https://doi.org/10.1093/bib/bbq015
17 https://doi.org/10.1093/bib/bbs017
18 https://doi.org/10.1093/bib/bbv110
19 https://doi.org/10.1093/bioinformatics/btp352
20 https://doi.org/10.1093/bioinformatics/btq033
21 https://doi.org/10.1093/bioinformatics/btr092
22 https://doi.org/10.1093/bioinformatics/btt730
23 https://doi.org/10.1093/bioinformatics/btu170
24 https://doi.org/10.1093/nar/gkp1137
25 https://doi.org/10.1093/nar/gkw1134
26 https://doi.org/10.1101/gad.943102
27 https://doi.org/10.1101/gr.084830.108
28 https://doi.org/10.1101/gr.136184.111
29 https://doi.org/10.1126/science.1141319
30 https://doi.org/10.1126/science.290.5500.2306
31 https://doi.org/10.1371/journal.pone.0011471
32 https://doi.org/10.1371/journal.pone.0085024
33 schema:datePublished 2018
34 schema:datePublishedReg 2018-01-01
35 schema:description Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become an essential tool for epigenetic scientists. ChIP-seq is used to map protein-DNA interactions and epigenetic marks such as histone modifications at the genome-wide level. Here we describe a complete ChIP-seq laboratory protocol (tailored toward processing tissue samples as well as cell lines) and the bioinformatic pipelines utilized for handling raw sequencing files through to peak calling.
36 schema:editor N228db2eb4d924483b6511a143d09681d
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N9c6aaf460c4d43b88b5182c36aa5943b
41 schema:name Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis
42 schema:pagination 271-288
43 schema:productId N1f1c04725ea34f0ab769a755485b4a03
44 N4176a960d5574f129d918e5d9363ea86
45 Ne32420d1e86a4facb9dd338a943fc9ce
46 Ne645e68453b345f787215b2f6b2ba1e9
47 schema:publisher N1d291e1100c545dd927e6ca11251ef5d
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101394216
49 https://doi.org/10.1007/978-1-4939-7774-1_15
50 schema:sdDatePublished 2019-04-15T19:23
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N55c8ad7447b54292b9f5a9f143a844f7
53 schema:url http://link.springer.com/10.1007/978-1-4939-7774-1_15
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N08cb835785b5495f8e43929396c178b8 rdf:first sg:person.01137411175.38
58 rdf:rest Neb4168d149634cb994ac09d78387725d
59 N1d291e1100c545dd927e6ca11251ef5d schema:location New York, NY
60 schema:name Springer New York
61 rdf:type schema:Organisation
62 N1f1c04725ea34f0ab769a755485b4a03 schema:name readcube_id
63 schema:value 28fd27109b33f7dbb9e19780413f4ff26bd0914fd3f12a84bd2b8e52e9a520b2
64 rdf:type schema:PropertyValue
65 N228db2eb4d924483b6511a143d09681d rdf:first N445d5f6afa644e9381c390ea0e85c820
66 rdf:rest N7a5422f5f16c4d6b9629d421b10cd019
67 N4176a960d5574f129d918e5d9363ea86 schema:name pubmed_id
68 schema:value 29524141
69 rdf:type schema:PropertyValue
70 N445d5f6afa644e9381c390ea0e85c820 schema:familyName Jeltsch
71 schema:givenName Albert
72 rdf:type schema:Person
73 N55c8ad7447b54292b9f5a9f143a844f7 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N5c9d5e1cf7254436a5c53fcd8aa6b354 schema:familyName Rots
76 schema:givenName Marianne G.
77 rdf:type schema:Person
78 N7a5422f5f16c4d6b9629d421b10cd019 rdf:first N5c9d5e1cf7254436a5c53fcd8aa6b354
79 rdf:rest rdf:nil
80 N9c6aaf460c4d43b88b5182c36aa5943b schema:isbn 978-1-4939-7773-4
81 978-1-4939-7774-1
82 schema:name Epigenome Editing
83 rdf:type schema:Book
84 Nc9d1a8ba0b7a44768b9ed8746c019952 rdf:first sg:person.0767047363.32
85 rdf:rest rdf:nil
86 Ne32420d1e86a4facb9dd338a943fc9ce schema:name doi
87 schema:value 10.1007/978-1-4939-7774-1_15
88 rdf:type schema:PropertyValue
89 Ne645e68453b345f787215b2f6b2ba1e9 schema:name dimensions_id
90 schema:value pub.1101394216
91 rdf:type schema:PropertyValue
92 Neb4168d149634cb994ac09d78387725d rdf:first sg:person.013216436173.37
93 rdf:rest Nc9d1a8ba0b7a44768b9ed8746c019952
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
98 schema:name Genetics
99 rdf:type schema:DefinedTerm
100 sg:person.01137411175.38 schema:affiliation https://www.grid.ac/institutes/grid.439591.3
101 schema:familyName Patten
102 schema:givenName Darren K.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137411175.38
104 rdf:type schema:Person
105 sg:person.013216436173.37 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
106 schema:familyName Corleone
107 schema:givenName Giacomo
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216436173.37
109 rdf:type schema:Person
110 sg:person.0767047363.32 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
111 schema:familyName Magnani
112 schema:givenName Luca
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767047363.32
114 rdf:type schema:Person
115 sg:pub.10.1038/35054095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037596378
116 https://doi.org/10.1038/35054095
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
119 https://doi.org/10.1038/nature07829
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ng569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056459183
122 https://doi.org/10.1038/ng569
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
125 https://doi.org/10.1038/nmeth.1923
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
128 https://doi.org/10.1038/nmeth1068
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nprot.2012.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003624809
131 https://doi.org/10.1038/nprot.2012.101
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nrg2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115199
134 https://doi.org/10.1038/nrg2641
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/gb-2008-9-9-r137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608848
137 https://doi.org/10.1186/gb-2008-9-9-r137
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/0471250953.bi1107s32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012403628
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ymeth.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003848453
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0076-6879(02)50979-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024630464
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bib/bbs017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766327
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bib/bbv110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008929951
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/btq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892131
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/bioinformatics/btr092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024523915
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/bioinformatics/btt730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025275748
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gkp1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112607
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkw1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059932075
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1101/gad.943102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030092845
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1101/gr.084830.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898401
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1101/gr.136184.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021823681
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.290.5500.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040836033
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0011471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857332
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pone.0085024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047209905
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.439591.3 schema:alternateName Homerton University Hospital
182 schema:name Homerton University Hospital
183 Imperial College London
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
186 schema:name Imperial College London
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...