Prediction of CpG Islands as an Intrinsic Clustering Property Found in Many Eukaryotic DNA Sequences and Its Relation to DNA ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Cristina Gómez-Martín , Ricardo Lebrón , José L. Oliver , Michael Hackenberg

ABSTRACT

The promoter region of around 70% of all genes in the human genome is overlapped by a CpG island (CGI). CGIs have known functions in the transcription initiation and outstanding compositional features like high G+C content and CpG ratios when compared to the bulk DNA. We have shown before that CGIs manifest as clusters of CpGs in mammalian genomes and can therefore be detected using clustering methods. These techniques have several advantages over sliding window approaches which apply compositional properties as thresholds. In this protocol we show how to determine local (CpG islands) and global (distance distribution) clustering properties of CG dinucleotides and how to generalize this analysis to any k-mer or combinations of it. In addition, we illustrate how to easily cross the output of a CpG island prediction algorithm with our methylation database to detect differentially methylated CGIs. The analysis is given in a step-by-step protocol and all necessary programs are implemented into a virtual machine or, alternatively, the software can be downloaded and easily installed. More... »

PAGES

31-47

References to SciGraph publications

Book

TITLE

CpG Islands

ISBN

978-1-4939-7767-3
978-1-4939-7768-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-7768-0_3

DOI

http://dx.doi.org/10.1007/978-1-4939-7768-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101884554

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29605846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University of Granada", 
            "Instituto de Biotecnolog\u00eda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez-Mart\u00edn", 
        "givenName": "Cristina", 
        "id": "sg:person.0722741065.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722741065.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Granada", 
            "Instituto de Biotecnolog\u00eda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebr\u00f3n", 
        "givenName": "Ricardo", 
        "id": "sg:person.01300227132.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300227132.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Granada", 
            "Instituto de Biotecnolog\u00eda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "Jos\u00e9 L.", 
        "id": "sg:person.0643703414.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643703414.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Granada", 
            "Instituto de Biotecnolog\u00eda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenberg", 
        "givenName": "Michael", 
        "id": "sg:person.01062552671.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062552671.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2014.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000108655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2012-20969-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000920774", 
          "https://doi.org/10.1140/epjb/e2012-20969-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001394004", 
          "https://doi.org/10.1038/nature08514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-7188-6-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009031175", 
          "https://doi.org/10.1186/1748-7188-6-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/8.1.197-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009794790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90689-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022754921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022815743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.052410099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023462148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023845443", 
          "https://doi.org/10.1186/1471-2105-7-446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023845443", 
          "https://doi.org/10.1186/1471-2105-7-446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032911085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036150552", 
          "https://doi.org/10.1038/nrg2341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2011.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036353299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040130951", 
          "https://doi.org/10.1007/bf00178863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040130951", 
          "https://doi.org/10.1007/bf00178863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/287560a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042867394", 
          "https://doi.org/10.1038/287560a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.2037511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043751872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044038003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046742493", 
          "https://doi.org/10.1186/1471-2164-11-327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050261622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051996903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.031908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.031908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080006093"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "The promoter region of around 70% of all genes in the human genome is overlapped by a CpG island (CGI). CGIs have known functions in the transcription initiation and outstanding compositional features like high G+C content and CpG ratios when compared to the bulk DNA. We have shown before that CGIs manifest as clusters of CpGs in mammalian genomes and can therefore be detected using clustering methods. These techniques have several advantages over sliding window approaches which apply compositional properties as thresholds. In this protocol we show how to determine local (CpG islands) and global (distance distribution) clustering properties of CG dinucleotides and how to generalize this analysis to any k-mer or combinations of it. In addition, we illustrate how to easily cross the output of a CpG island prediction algorithm with our methylation database to detect differentially methylated CGIs. The analysis is given in a step-by-step protocol and all necessary programs are implemented into a virtual machine or, alternatively, the software can be downloaded and easily installed.", 
    "editor": [
      {
        "familyName": "Vavouri", 
        "givenName": "Tanya", 
        "type": "Person"
      }, 
      {
        "familyName": "Peinado", 
        "givenName": "Miguel A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-7768-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-7767-3", 
        "978-1-4939-7768-0"
      ], 
      "name": "CpG Islands", 
      "type": "Book"
    }, 
    "name": "Prediction of CpG Islands as an Intrinsic Clustering Property Found in Many Eukaryotic DNA Sequences and Its Relation to DNA Methylation", 
    "pagination": "31-47", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-7768-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93bb10c18848ae503d9dedff73fe6295fb464e083fcabed96595686c0af186b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101884554"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29605846"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-7768-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1101884554"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-7768-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7768-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7768-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7768-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7768-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-7768-0_3 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N46dd463fd77e463284c3916fd9701c21
4 schema:citation sg:pub.10.1007/bf00178863
5 sg:pub.10.1038/287560a0
6 sg:pub.10.1038/nature08514
7 sg:pub.10.1038/nrg2341
8 sg:pub.10.1140/epjb/e2012-20969-5
9 sg:pub.10.1186/1471-2105-7-446
10 sg:pub.10.1186/1471-2164-11-327
11 sg:pub.10.1186/1748-7188-6-2
12 https://doi.org/10.1016/0022-2836(87)90689-9
13 https://doi.org/10.1016/j.compbiolchem.2014.08.011
14 https://doi.org/10.1016/j.jtbi.2011.12.024
15 https://doi.org/10.1073/pnas.052410099
16 https://doi.org/10.1093/nar/8.1.197-c
17 https://doi.org/10.1093/nar/gkq942
18 https://doi.org/10.1093/nar/gkr1079
19 https://doi.org/10.1093/nar/gkt1202
20 https://doi.org/10.1093/nar/gku1195
21 https://doi.org/10.1093/nar/gkw996
22 https://doi.org/10.1093/oxfordjournals.molbev.a040370
23 https://doi.org/10.1101/gad.2037511
24 https://doi.org/10.1101/gr.229102
25 https://doi.org/10.1103/physreve.83.031908
26 schema:datePublished 2018
27 schema:datePublishedReg 2018-01-01
28 schema:description The promoter region of around 70% of all genes in the human genome is overlapped by a CpG island (CGI). CGIs have known functions in the transcription initiation and outstanding compositional features like high G+C content and CpG ratios when compared to the bulk DNA. We have shown before that CGIs manifest as clusters of CpGs in mammalian genomes and can therefore be detected using clustering methods. These techniques have several advantages over sliding window approaches which apply compositional properties as thresholds. In this protocol we show how to determine local (CpG islands) and global (distance distribution) clustering properties of CG dinucleotides and how to generalize this analysis to any k-mer or combinations of it. In addition, we illustrate how to easily cross the output of a CpG island prediction algorithm with our methylation database to detect differentially methylated CGIs. The analysis is given in a step-by-step protocol and all necessary programs are implemented into a virtual machine or, alternatively, the software can be downloaded and easily installed.
29 schema:editor Na2a401d9c22744e79ab2ac3649b3aa5f
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6fb4a190a5ec465c85438301d5c6566e
34 schema:name Prediction of CpG Islands as an Intrinsic Clustering Property Found in Many Eukaryotic DNA Sequences and Its Relation to DNA Methylation
35 schema:pagination 31-47
36 schema:productId N9bf989ca326e48a69b5bbfac3bfbfbc0
37 Nca9db72a675049fe9cf27beb01ce520a
38 Nf13f491dd96a4a00a6b85bedf0350eab
39 Nfa4fe689cefd42529bee5c2ff73049c6
40 schema:publisher Nc3037e3be41f4cb7a1bfeef881d1a465
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101884554
42 https://doi.org/10.1007/978-1-4939-7768-0_3
43 schema:sdDatePublished 2019-04-15T18:52
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N40160af81af548a599c271c0c7a6a410
46 schema:url http://link.springer.com/10.1007/978-1-4939-7768-0_3
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N02a17ee6a8f94f7e93c0efe3dd975716 rdf:first sg:person.0643703414.30
51 rdf:rest N5c5f4fb54bfc4dddbf20f26834b5e52b
52 N0743b8aa612e4750b73f56cc2addd73e rdf:first N2297af3aa14f4fa295c4d168f7bb5888
53 rdf:rest rdf:nil
54 N2297af3aa14f4fa295c4d168f7bb5888 schema:familyName Peinado
55 schema:givenName Miguel A.
56 rdf:type schema:Person
57 N40160af81af548a599c271c0c7a6a410 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N46dd463fd77e463284c3916fd9701c21 rdf:first sg:person.0722741065.78
60 rdf:rest Nae9d076934a44c03a7e601caa8739df2
61 N5c5f4fb54bfc4dddbf20f26834b5e52b rdf:first sg:person.01062552671.42
62 rdf:rest rdf:nil
63 N6fb4a190a5ec465c85438301d5c6566e schema:isbn 978-1-4939-7767-3
64 978-1-4939-7768-0
65 schema:name CpG Islands
66 rdf:type schema:Book
67 N7d0c50892bb9490582adbbe81a64f246 schema:familyName Vavouri
68 schema:givenName Tanya
69 rdf:type schema:Person
70 N81e1c096a3ab4f1894fd28898c933dd4 schema:name Instituto de Biotecnología
71 University of Granada
72 rdf:type schema:Organization
73 N9bf989ca326e48a69b5bbfac3bfbfbc0 schema:name pubmed_id
74 schema:value 29605846
75 rdf:type schema:PropertyValue
76 Na2a401d9c22744e79ab2ac3649b3aa5f rdf:first N7d0c50892bb9490582adbbe81a64f246
77 rdf:rest N0743b8aa612e4750b73f56cc2addd73e
78 Nae9d076934a44c03a7e601caa8739df2 rdf:first sg:person.01300227132.11
79 rdf:rest N02a17ee6a8f94f7e93c0efe3dd975716
80 Nbd72dab4a1a74208aa17959f6a70e0cf schema:name Instituto de Biotecnología
81 University of Granada
82 rdf:type schema:Organization
83 Nc3037e3be41f4cb7a1bfeef881d1a465 schema:location New York, NY
84 schema:name Springer New York
85 rdf:type schema:Organisation
86 Nca9db72a675049fe9cf27beb01ce520a schema:name doi
87 schema:value 10.1007/978-1-4939-7768-0_3
88 rdf:type schema:PropertyValue
89 Ne2b6109bcb2b4d7e858aa75ab68e4cd0 schema:name Instituto de Biotecnología
90 University of Granada
91 rdf:type schema:Organization
92 Ned031060e7614538bd747fda3d49566c schema:name Instituto de Biotecnología
93 University of Granada
94 rdf:type schema:Organization
95 Nf13f491dd96a4a00a6b85bedf0350eab schema:name dimensions_id
96 schema:value pub.1101884554
97 rdf:type schema:PropertyValue
98 Nfa4fe689cefd42529bee5c2ff73049c6 schema:name readcube_id
99 schema:value 93bb10c18848ae503d9dedff73fe6295fb464e083fcabed96595686c0af186b2
100 rdf:type schema:PropertyValue
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
105 schema:name Genetics
106 rdf:type schema:DefinedTerm
107 sg:person.01062552671.42 schema:affiliation Ned031060e7614538bd747fda3d49566c
108 schema:familyName Hackenberg
109 schema:givenName Michael
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062552671.42
111 rdf:type schema:Person
112 sg:person.01300227132.11 schema:affiliation Nbd72dab4a1a74208aa17959f6a70e0cf
113 schema:familyName Lebrón
114 schema:givenName Ricardo
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300227132.11
116 rdf:type schema:Person
117 sg:person.0643703414.30 schema:affiliation N81e1c096a3ab4f1894fd28898c933dd4
118 schema:familyName Oliver
119 schema:givenName José L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643703414.30
121 rdf:type schema:Person
122 sg:person.0722741065.78 schema:affiliation Ne2b6109bcb2b4d7e858aa75ab68e4cd0
123 schema:familyName Gómez-Martín
124 schema:givenName Cristina
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722741065.78
126 rdf:type schema:Person
127 sg:pub.10.1007/bf00178863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040130951
128 https://doi.org/10.1007/bf00178863
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/287560a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042867394
131 https://doi.org/10.1038/287560a0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature08514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394004
134 https://doi.org/10.1038/nature08514
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nrg2341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036150552
137 https://doi.org/10.1038/nrg2341
138 rdf:type schema:CreativeWork
139 sg:pub.10.1140/epjb/e2012-20969-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000920774
140 https://doi.org/10.1140/epjb/e2012-20969-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2105-7-446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023845443
143 https://doi.org/10.1186/1471-2105-7-446
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1471-2164-11-327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046742493
146 https://doi.org/10.1186/1471-2164-11-327
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1748-7188-6-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009031175
149 https://doi.org/10.1186/1748-7188-6-2
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0022-2836(87)90689-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022754921
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.compbiolchem.2014.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000108655
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jtbi.2011.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036353299
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.052410099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023462148
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/8.1.197-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1009794790
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkq942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051996903
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gkr1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032911085
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkt1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044038003
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/nar/gku1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022815743
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/gkw996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050261622
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/oxfordjournals.molbev.a040370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080006093
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1101/gad.2037511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043751872
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.83.031908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741578
178 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...