The Surprising Resolution of the Poincaré Conjecture View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Donal O’Shea

ABSTRACT

In 2003, Grigory Perelman proved the celebrated Poincaré conjecture, establishing that the simplest topological property (simple-connectivity) characterizes the simplest closed three-manifold (the three-sphere). The paper discusses the unexpected irony whereby techniques from analysis and mathematical physics to which topology had contributed so much, would one century later repay the favor by being used to solve the most famous purely topological problem of all time. Few would have imagined that the object central to Perelman’s proof, a hierarchy of Riemannian manifolds connected by the Ricci flow, might provide a mathematical object useful for modeling space and space-time at different scales. More... »

PAGES

401-415

Book

TITLE

Beyond Einstein

ISBN

978-1-4939-7706-2
978-1-4939-7708-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-7708-6_13

DOI

http://dx.doi.org/10.1007/978-1-4939-7708-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104903366


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New College of Florida", 
          "id": "https://www.grid.ac/institutes/grid.422569.e", 
          "name": [
            "New College of Florida"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Shea", 
        "givenName": "Donal", 
        "id": "sg:person.01316051526.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316051526.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02418420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002090478", 
          "https://doi.org/10.1007/bf02418420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02415442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007554747", 
          "https://doi.org/10.1007/bf02415442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02565940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007639828", 
          "https://doi.org/10.1007/bf02565940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03024461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016635979", 
          "https://doi.org/10.1007/bf03024461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044482375-5/50003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018817298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s1-32.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041175866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03014091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042835284", 
          "https://doi.org/10.1007/bf03014091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01442920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051914061", 
          "https://doi.org/10.1007/bf01442920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.45-3175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073422119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083662234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214437136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "In 2003, Grigory Perelman proved the celebrated Poincar\u00e9 conjecture, establishing that the simplest topological property (simple-connectivity) characterizes the simplest closed three-manifold (the three-sphere). The paper discusses the unexpected irony whereby techniques from analysis and mathematical physics to which topology had contributed so much, would one century later repay the favor by being used to solve the most famous purely topological problem of all time. Few would have imagined that the object central to Perelman\u2019s proof, a hierarchy of Riemannian manifolds connected by the Ricci flow, might provide a mathematical object useful for modeling space and space-time at different scales.", 
    "editor": [
      {
        "familyName": "Rowe", 
        "givenName": "David E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sauer", 
        "givenName": "Tilman", 
        "type": "Person"
      }, 
      {
        "familyName": "Walter", 
        "givenName": "Scott A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-7708-6_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-7706-2", 
        "978-1-4939-7708-6"
      ], 
      "name": "Beyond Einstein", 
      "type": "Book"
    }, 
    "name": "The Surprising Resolution of the Poincar\u00e9 Conjecture", 
    "pagination": "401-415", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-7708-6_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5464e67550bf5bab806f129e4d81daa55a0408c194aac4294da5bb60085d441"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104903366"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-7708-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1104903366"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-7708-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7708-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7708-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7708-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7708-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-7708-6_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N50ddaf6b4bc64a81acef2022ace5b4a2
4 schema:citation sg:pub.10.1007/bf01442920
5 sg:pub.10.1007/bf02415442
6 sg:pub.10.1007/bf02418420
7 sg:pub.10.1007/bf02565940
8 sg:pub.10.1007/bf03014091
9 sg:pub.10.1007/bf03024461
10 https://doi.org/10.1016/b978-044482375-5/50003-1
11 https://doi.org/10.1112/plms/s1-32.1.277
12 https://doi.org/10.2307/1969769
13 https://doi.org/10.2307/1970228
14 https://doi.org/10.2307/1970239
15 https://doi.org/10.24033/bsmf.657
16 https://doi.org/10.4310/jdg/1214437136
17 https://doi.org/10.5860/choice.45-3175
18 schema:datePublished 2018
19 schema:datePublishedReg 2018-01-01
20 schema:description In 2003, Grigory Perelman proved the celebrated Poincaré conjecture, establishing that the simplest topological property (simple-connectivity) characterizes the simplest closed three-manifold (the three-sphere). The paper discusses the unexpected irony whereby techniques from analysis and mathematical physics to which topology had contributed so much, would one century later repay the favor by being used to solve the most famous purely topological problem of all time. Few would have imagined that the object central to Perelman’s proof, a hierarchy of Riemannian manifolds connected by the Ricci flow, might provide a mathematical object useful for modeling space and space-time at different scales.
21 schema:editor Na5e5c348f14144638e57c20fae730c9e
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nd7eacb21adeb4cca806a73d8ed2610c3
26 schema:name The Surprising Resolution of the Poincaré Conjecture
27 schema:pagination 401-415
28 schema:productId N8d87014deecf4c83ae59c98482943afd
29 N9306a8caaf3d4e0ba9458478576ea8cd
30 Naf0eda87744f424d9afbf29a5bca506c
31 schema:publisher Nfc71d7df1dcf4b3191c31057416a77d7
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104903366
33 https://doi.org/10.1007/978-1-4939-7708-6_13
34 schema:sdDatePublished 2019-04-16T00:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb3e17410577d48818ee1bf199731ee37
37 schema:url http://link.springer.com/10.1007/978-1-4939-7708-6_13
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N1a7ac0994f714600a4c114307a8069d6 schema:familyName Walter
42 schema:givenName Scott A.
43 rdf:type schema:Person
44 N50ddaf6b4bc64a81acef2022ace5b4a2 rdf:first sg:person.01316051526.48
45 rdf:rest rdf:nil
46 N612905c76db4477192edb0e79eceedaa rdf:first N1a7ac0994f714600a4c114307a8069d6
47 rdf:rest rdf:nil
48 N6f6d404aae9d47e88d09d558f5de8456 rdf:first Nf5bb51ae12c3499d871a8caeba543908
49 rdf:rest N612905c76db4477192edb0e79eceedaa
50 N7074ef0cee384f26a625e13aa4fd56ba schema:familyName Rowe
51 schema:givenName David E.
52 rdf:type schema:Person
53 N8d87014deecf4c83ae59c98482943afd schema:name doi
54 schema:value 10.1007/978-1-4939-7708-6_13
55 rdf:type schema:PropertyValue
56 N9306a8caaf3d4e0ba9458478576ea8cd schema:name dimensions_id
57 schema:value pub.1104903366
58 rdf:type schema:PropertyValue
59 Na5e5c348f14144638e57c20fae730c9e rdf:first N7074ef0cee384f26a625e13aa4fd56ba
60 rdf:rest N6f6d404aae9d47e88d09d558f5de8456
61 Naf0eda87744f424d9afbf29a5bca506c schema:name readcube_id
62 schema:value a5464e67550bf5bab806f129e4d81daa55a0408c194aac4294da5bb60085d441
63 rdf:type schema:PropertyValue
64 Nb3e17410577d48818ee1bf199731ee37 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nd7eacb21adeb4cca806a73d8ed2610c3 schema:isbn 978-1-4939-7706-2
67 978-1-4939-7708-6
68 schema:name Beyond Einstein
69 rdf:type schema:Book
70 Nf5bb51ae12c3499d871a8caeba543908 schema:familyName Sauer
71 schema:givenName Tilman
72 rdf:type schema:Person
73 Nfc71d7df1dcf4b3191c31057416a77d7 schema:location New York, NY
74 schema:name Springer New York
75 rdf:type schema:Organisation
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:person.01316051526.48 schema:affiliation https://www.grid.ac/institutes/grid.422569.e
83 schema:familyName O’Shea
84 schema:givenName Donal
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316051526.48
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01442920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051914061
88 https://doi.org/10.1007/bf01442920
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02415442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007554747
91 https://doi.org/10.1007/bf02415442
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02418420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002090478
94 https://doi.org/10.1007/bf02418420
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02565940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007639828
97 https://doi.org/10.1007/bf02565940
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf03014091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042835284
100 https://doi.org/10.1007/bf03014091
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf03024461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016635979
103 https://doi.org/10.1007/bf03024461
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/b978-044482375-5/50003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018817298
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1112/plms/s1-32.1.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041175866
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/1969769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675132
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2307/1970228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675565
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2307/1970239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675576
114 rdf:type schema:CreativeWork
115 https://doi.org/10.24033/bsmf.657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083662234
116 rdf:type schema:CreativeWork
117 https://doi.org/10.4310/jdg/1214437136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459425
118 rdf:type schema:CreativeWork
119 https://doi.org/10.5860/choice.45-3175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073422119
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.422569.e schema:alternateName New College of Florida
122 schema:name New College of Florida
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...