GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Lisa R. Hoving , Marieke Heijink , Vanessa van Harmelen , Ko Willems van Dijk , Martin Giera

ABSTRACT

Short-chain fatty acids, the end products of fermentation of dietary fibers by the gut microbiota, have been shown to exert multiple effects on mammalian metabolism. For the analysis of short-chain fatty acids, gas chromatography-mass spectrometry is a very powerful and reliable method. Here, we describe a fast, reliable, and reproducible method for the separation and quantification of short-chain fatty acids in mouse feces, cecum content, and blood samples (i.e., plasma or serum) using gas chromatography-mass spectrometry. The short-chain fatty acids analyzed include acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, and heptanoic acid. More... »

PAGES

247-256

References to SciGraph publications

  • 2016-12. Diet, microorganisms and their metabolites, and colon cancer in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2010-02. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2015-01. Mass-spectrometry-based microbial metabolomics: recent developments and applications in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • Book

    TITLE

    Clinical Metabolomics

    ISBN

    978-1-4939-7591-4
    978-1-4939-7592-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4939-7592-1_17

    DOI

    http://dx.doi.org/10.1007/978-1-4939-7592-1_17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100589391

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29363078


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Leiden University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.10419.3d", 
              "name": [
                "Leiden University Medical Center (LUMC)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoving", 
            "givenName": "Lisa R.", 
            "id": "sg:person.0613441121.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613441121.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leiden University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.10419.3d", 
              "name": [
                "Leiden University Medical Center (LUMC)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heijink", 
            "givenName": "Marieke", 
            "id": "sg:person.015075043673.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075043673.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leiden University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.10419.3d", 
              "name": [
                "Leiden University Medical Center (LUMC)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Harmelen", 
            "givenName": "Vanessa", 
            "id": "sg:person.0625004511.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625004511.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leiden University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.10419.3d", 
              "name": [
                "Leiden University Medical Center (LUMC)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Dijk", 
            "givenName": "Ko Willems", 
            "id": "sg:person.0777031047.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777031047.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leiden University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.10419.3d", 
              "name": [
                "Leiden University Medical Center (LUMC)"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giera", 
            "givenName": "Martin", 
            "id": "sg:person.01151300313.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151300313.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev-nutr-071714-034449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007805004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-014-8127-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008816285", 
              "https://doi.org/10.1007/s00216-014-8127-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/120830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024381529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gut.28.10.1221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024645746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbalip.2011.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026770354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2016.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028037477", 
              "https://doi.org/10.1038/nrgastro.2016.165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/rcm.6923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029737836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ab.2010.11.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044684093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2355-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047626939", 
              "https://doi.org/10.1007/s00253-009-2355-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2355-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047626939", 
              "https://doi.org/10.1007/s00253-009-2355-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-2355-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047626939", 
              "https://doi.org/10.1007/s00253-009-2355-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac5018265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055019451"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018", 
        "datePublishedReg": "2018-01-01", 
        "description": "Short-chain fatty acids, the end products of fermentation of dietary fibers by the gut microbiota, have been shown to exert multiple effects on mammalian metabolism. For the analysis of short-chain fatty acids, gas chromatography-mass spectrometry is a very powerful and reliable method. Here, we describe a fast, reliable, and reproducible method for the separation and quantification of short-chain fatty acids in mouse feces, cecum content, and blood samples (i.e., plasma or serum) using gas chromatography-mass spectrometry. The short-chain fatty acids analyzed include acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, and heptanoic acid.", 
        "editor": [
          {
            "familyName": "Giera", 
            "givenName": "Martin", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4939-7592-1_17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4939-7591-4", 
            "978-1-4939-7592-1"
          ], 
          "name": "Clinical Metabolomics", 
          "type": "Book"
        }, 
        "name": "GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples", 
        "pagination": "247-256", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4939-7592-1_17"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9dc1d0a257db4cb2c1e5955ae01cb4eb74e05fc0cc1ffd613899401c9a1949a1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100589391"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29363078"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4939-7592-1_17", 
          "https://app.dimensions.ai/details/publication/pub.1100589391"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000565.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4939-7592-1_17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7592-1_17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7592-1_17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7592-1_17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7592-1_17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    130 TRIPLES      23 PREDICATES      38 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4939-7592-1_17 schema:about anzsrc-for:03
    2 anzsrc-for:0301
    3 schema:author Nd1e07d0599a14deeae8c297c4bdc9bf6
    4 schema:citation sg:pub.10.1007/s00216-014-8127-7
    5 sg:pub.10.1007/s00253-009-2355-3
    6 sg:pub.10.1038/nrgastro.2016.165
    7 https://doi.org/10.1002/rcm.6923
    8 https://doi.org/10.1016/j.ab.2010.11.030
    9 https://doi.org/10.1016/j.bbalip.2011.07.006
    10 https://doi.org/10.1021/ac5018265
    11 https://doi.org/10.1136/gut.28.10.1221
    12 https://doi.org/10.1146/annurev-nutr-071714-034449
    13 https://doi.org/10.1155/2015/120830
    14 schema:datePublished 2018
    15 schema:datePublishedReg 2018-01-01
    16 schema:description Short-chain fatty acids, the end products of fermentation of dietary fibers by the gut microbiota, have been shown to exert multiple effects on mammalian metabolism. For the analysis of short-chain fatty acids, gas chromatography-mass spectrometry is a very powerful and reliable method. Here, we describe a fast, reliable, and reproducible method for the separation and quantification of short-chain fatty acids in mouse feces, cecum content, and blood samples (i.e., plasma or serum) using gas chromatography-mass spectrometry. The short-chain fatty acids analyzed include acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, and heptanoic acid.
    17 schema:editor Nafa59de6fe5c48c98d0872963458079a
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N84191546fdc04a95901f6659dc2adf4a
    22 schema:name GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples
    23 schema:pagination 247-256
    24 schema:productId N022ab90ce6f841728f1bcc48dbc2dc12
    25 N1d5497319599472e811341a85964da1c
    26 N37c79a3e94cb4b59ba30b3fb15ef0221
    27 Nada610f9cd7b491e826c6cbd389e4d6c
    28 schema:publisher Nee3d10d8163f49bd86c8d526640193f6
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100589391
    30 https://doi.org/10.1007/978-1-4939-7592-1_17
    31 schema:sdDatePublished 2019-04-15T15:55
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N42317e73c87e448aac621e5231eaf732
    34 schema:url http://link.springer.com/10.1007/978-1-4939-7592-1_17
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset chapters
    37 rdf:type schema:Chapter
    38 N022ab90ce6f841728f1bcc48dbc2dc12 schema:name doi
    39 schema:value 10.1007/978-1-4939-7592-1_17
    40 rdf:type schema:PropertyValue
    41 N1d5497319599472e811341a85964da1c schema:name pubmed_id
    42 schema:value 29363078
    43 rdf:type schema:PropertyValue
    44 N2848b892277545459c821474b4209d5a rdf:first sg:person.0777031047.08
    45 rdf:rest Nc4119d2b7470431e877f761f60f0ced2
    46 N37c79a3e94cb4b59ba30b3fb15ef0221 schema:name readcube_id
    47 schema:value 9dc1d0a257db4cb2c1e5955ae01cb4eb74e05fc0cc1ffd613899401c9a1949a1
    48 rdf:type schema:PropertyValue
    49 N42317e73c87e448aac621e5231eaf732 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N607ac5e11df34bb18e893e86ce3e1cc0 rdf:first sg:person.0625004511.05
    52 rdf:rest N2848b892277545459c821474b4209d5a
    53 N84191546fdc04a95901f6659dc2adf4a schema:isbn 978-1-4939-7591-4
    54 978-1-4939-7592-1
    55 schema:name Clinical Metabolomics
    56 rdf:type schema:Book
    57 N84f030538e944810a5e70874ce9da473 rdf:first sg:person.015075043673.10
    58 rdf:rest N607ac5e11df34bb18e893e86ce3e1cc0
    59 Nada610f9cd7b491e826c6cbd389e4d6c schema:name dimensions_id
    60 schema:value pub.1100589391
    61 rdf:type schema:PropertyValue
    62 Nafa59de6fe5c48c98d0872963458079a rdf:first Nec43e34b73c24c91af19544e7d9ab9e2
    63 rdf:rest rdf:nil
    64 Nc4119d2b7470431e877f761f60f0ced2 rdf:first sg:person.01151300313.12
    65 rdf:rest rdf:nil
    66 Nd1e07d0599a14deeae8c297c4bdc9bf6 rdf:first sg:person.0613441121.26
    67 rdf:rest N84f030538e944810a5e70874ce9da473
    68 Nec43e34b73c24c91af19544e7d9ab9e2 schema:familyName Giera
    69 schema:givenName Martin
    70 rdf:type schema:Person
    71 Nee3d10d8163f49bd86c8d526640193f6 schema:location New York, NY
    72 schema:name Springer New York
    73 rdf:type schema:Organisation
    74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Chemical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Analytical Chemistry
    79 rdf:type schema:DefinedTerm
    80 sg:person.01151300313.12 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
    81 schema:familyName Giera
    82 schema:givenName Martin
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151300313.12
    84 rdf:type schema:Person
    85 sg:person.015075043673.10 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
    86 schema:familyName Heijink
    87 schema:givenName Marieke
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075043673.10
    89 rdf:type schema:Person
    90 sg:person.0613441121.26 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
    91 schema:familyName Hoving
    92 schema:givenName Lisa R.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613441121.26
    94 rdf:type schema:Person
    95 sg:person.0625004511.05 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
    96 schema:familyName van Harmelen
    97 schema:givenName Vanessa
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625004511.05
    99 rdf:type schema:Person
    100 sg:person.0777031047.08 schema:affiliation https://www.grid.ac/institutes/grid.10419.3d
    101 schema:familyName van Dijk
    102 schema:givenName Ko Willems
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777031047.08
    104 rdf:type schema:Person
    105 sg:pub.10.1007/s00216-014-8127-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008816285
    106 https://doi.org/10.1007/s00216-014-8127-7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00253-009-2355-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047626939
    109 https://doi.org/10.1007/s00253-009-2355-3
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/nrgastro.2016.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028037477
    112 https://doi.org/10.1038/nrgastro.2016.165
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1002/rcm.6923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029737836
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.ab.2010.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044684093
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.bbalip.2011.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026770354
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1021/ac5018265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055019451
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1136/gut.28.10.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024645746
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1146/annurev-nutr-071714-034449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007805004
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1155/2015/120830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024381529
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.10419.3d schema:alternateName Leiden University Medical Center
    129 schema:name Leiden University Medical Center (LUMC)
    130 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...