Biosensors for the Detection and Quantification of AI-2 Class Quorum-Sensing Compounds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Sathish Rajamani , Richard Sayre

ABSTRACT

Intercellular small-molecular-weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum-sensing molecules. These molecules mediate a variety of population-dependent responses including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules have important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused to the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. Ligand-insensitive LuxP mutant FRET protein sensors were also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2 compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2. More... »

PAGES

73-88

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-7309-5_6

DOI

http://dx.doi.org/10.1007/978-1-4939-7309-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092654511

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29130165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biosensing Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Borates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Boron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bridged Bicyclo Compounds, Heterocyclic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Polyacrylamide Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Dyes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homoserine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quorum Sensing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrio", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New Mexico Consortium", 
          "id": "https://www.grid.ac/institutes/grid.422588.1", 
          "name": [
            "New Mexico Consortium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajamani", 
        "givenName": "Sathish", 
        "id": "sg:person.01202433763.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202433763.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New Mexico Consortium", 
          "id": "https://www.grid.ac/institutes/grid.422588.1", 
          "name": [
            "New Mexico Consortium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayre", 
        "givenName": "Richard", 
        "id": "sg:person.0610314665.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610314665.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/jbc.m111.230227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000062277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.12.3794-3805.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1993.tb01737.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002572936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0102-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758048", 
          "https://doi.org/10.1038/nbt0102-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0102-87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007758048", 
          "https://doi.org/10.1038/nbt0102-87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.021860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.5.1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1994.tb00422.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013743597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.142089199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015532992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m301333200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016169961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016505346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2000.01913.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036860569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2006.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/ps010202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043777867", 
          "https://doi.org/10.1208/ps010202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051969131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00592a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055181962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi602479e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055206834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi602479e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055206834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol047695j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056244982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol047695j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056244982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.c0117-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/129.12.2236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074554569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Intercellular small-molecular-weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum-sensing molecules. These molecules mediate a variety of population-dependent responses including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules have important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused to the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. Ligand-insensitive LuxP mutant FRET protein sensors were also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2 compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2.", 
    "editor": [
      {
        "familyName": "Leoni", 
        "givenName": "Livia", 
        "type": "Person"
      }, 
      {
        "familyName": "Rampioni", 
        "givenName": "Giordano", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-7309-5_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-7308-8", 
        "978-1-4939-7309-5"
      ], 
      "name": "Quorum Sensing", 
      "type": "Book"
    }, 
    "name": "Biosensors for the Detection and Quantification of AI-2 Class Quorum-Sensing Compounds", 
    "pagination": "73-88", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-7309-5_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f910d83d201f8ac27267bd61057eb23e1bea7294b1c3bbb8df20113062f4413"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092654511"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29130165"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-7309-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1092654511"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000517.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-7309-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7309-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7309-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7309-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-7309-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      23 PREDICATES      59 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-7309-5_6 schema:about N15867ac1ec90469a9774f9f3548b4518
2 N1a4d62fbffce44c3a2766945e0d5d25d
3 N2f1a6f65c7934807b3785c558504e56e
4 N50a3bec94f2745e59e390569b68ff907
5 N57d72e39ab274206adb0065bcc6803a2
6 N5bee70fd22fd4d71922b1200afa3bd58
7 N6040831fc6964f07af707c31124000b5
8 N70cdb269c84948e1932de8ee551b771a
9 Na6eeab45b23d48ccbdf48b64a232c0ed
10 Nc9248e7646124d9db854a1fd684bb2f8
11 Ncdedfc6fd5ec4fc895caeeca10cd7cbf
12 Nf53a51f721674b30be6d137e80f2785c
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author N4678b9f971e4486cae8564028d806a68
16 schema:citation sg:pub.10.1038/nbt0102-87
17 sg:pub.10.1208/ps010202
18 https://doi.org/10.1006/jmbi.1996.0645
19 https://doi.org/10.1016/j.mimet.2006.02.001
20 https://doi.org/10.1021/bi00592a012
21 https://doi.org/10.1021/bi602479e
22 https://doi.org/10.1021/ol047695j
23 https://doi.org/10.1046/j.1365-2958.2000.01913.x
24 https://doi.org/10.1073/pnas.142089199
25 https://doi.org/10.1073/pnas.74.5.1932
26 https://doi.org/10.1074/jbc.m111.230227
27 https://doi.org/10.1074/jbc.m301333200
28 https://doi.org/10.1093/emboj/cdg085
29 https://doi.org/10.1093/jn/129.12.2236
30 https://doi.org/10.1099/mic.0.c0117-0
31 https://doi.org/10.1110/ps.021860
32 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x
33 https://doi.org/10.1111/j.1365-2958.1994.tb00422.x
34 https://doi.org/10.1128/jb.186.12.3794-3805.2004
35 schema:datePublished 2018
36 schema:datePublishedReg 2018-01-01
37 schema:description Intercellular small-molecular-weight signaling molecules modulate a variety of biological functions in bacteria. One of the more complex behaviors mediated by intercellular signaling molecules is the suite of activities regulated by quorum-sensing molecules. These molecules mediate a variety of population-dependent responses including the expression of genes that regulate bioluminescence, type III secretion, siderophore production, colony morphology, biofilm formation, and metalloprotease production. Given their central role in regulating these responses, the detection and quantification of QS molecules have important practical implications. Until recently, the detection of QS molecules from Gram-negative bacteria has relied primarily on bacterial reporter systems. These bioassays though immensely useful are subject to interference by compounds that affect bacterial growth and metabolism. In addition, the reporter response is highly dependent on culture age and cell population density. To overcome such limitations, we developed an in vitro protein-based assay system for the rapid detection and quantification of the furanosyl borate diester (BAI-2) subclass of autoinducer-2 (AI-2) QS molecules. The biosensor is based on the interaction of BAI-2 with the Vibrio harveyi QS receptor LuxP. Conformation changes associated with BAI-2 binding to the LuxP receptor change the orientation of cyan and yellow variants of GFP (CFP and YFP) fused to the N- and C-termini, respectively, of the LuxP receptor. LuxP-BAI2 binding induces changes in fluorescence resonance energy transfer (FRET) between CFP and YFP, whose magnitude of change is ligand concentration dependent. Ligand-insensitive LuxP mutant FRET protein sensors were also developed for use as control biosensors. The FRET-based BAI-2 biosensor responds selectively to both synthetic and biologically derived BAI-2 compounds. This report describes the use of the LuxP-FRET biosensor for the detection and quantification of BAI-2.
38 schema:editor N79443182b00846e480988c5b595a3671
39 schema:genre chapter
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N272e8814caab4b9b95ac28d13a87a33b
43 schema:name Biosensors for the Detection and Quantification of AI-2 Class Quorum-Sensing Compounds
44 schema:pagination 73-88
45 schema:productId N44344cdbaec7478aaea2a032cf6c8fa8
46 N671a5f419dd44755a8ed69c884fc2a6c
47 N8198e7aff9584a20b219aa3827a90482
48 Nd1e340ea415643e093c0fd91fd4ed3df
49 schema:publisher Nce328601135e4052a7f6fced866e31d4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092654511
51 https://doi.org/10.1007/978-1-4939-7309-5_6
52 schema:sdDatePublished 2019-04-15T12:02
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N503b6bf2c32446879b0f38cad5c007b0
55 schema:url http://link.springer.com/10.1007/978-1-4939-7309-5_6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N14c57fda387e473f9dcc7a29b444a98d schema:familyName Rampioni
60 schema:givenName Giordano
61 rdf:type schema:Person
62 N15867ac1ec90469a9774f9f3548b4518 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Electrophoresis, Polyacrylamide Gel
64 rdf:type schema:DefinedTerm
65 N1a4d62fbffce44c3a2766945e0d5d25d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Borates
67 rdf:type schema:DefinedTerm
68 N272e8814caab4b9b95ac28d13a87a33b schema:isbn 978-1-4939-7308-8
69 978-1-4939-7309-5
70 schema:name Quorum Sensing
71 rdf:type schema:Book
72 N2f1a6f65c7934807b3785c558504e56e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Ligands
74 rdf:type schema:DefinedTerm
75 N44344cdbaec7478aaea2a032cf6c8fa8 schema:name readcube_id
76 schema:value 0f910d83d201f8ac27267bd61057eb23e1bea7294b1c3bbb8df20113062f4413
77 rdf:type schema:PropertyValue
78 N4678b9f971e4486cae8564028d806a68 rdf:first sg:person.01202433763.94
79 rdf:rest Nee6e823302464faf8bb3d071877ec179
80 N503b6bf2c32446879b0f38cad5c007b0 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N50a3bec94f2745e59e390569b68ff907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Biosensing Techniques
84 rdf:type schema:DefinedTerm
85 N57d72e39ab274206adb0065bcc6803a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Boron
87 rdf:type schema:DefinedTerm
88 N5bee70fd22fd4d71922b1200afa3bd58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Vibrio
90 rdf:type schema:DefinedTerm
91 N6040831fc6964f07af707c31124000b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Bridged Bicyclo Compounds, Heterocyclic
93 rdf:type schema:DefinedTerm
94 N671a5f419dd44755a8ed69c884fc2a6c schema:name dimensions_id
95 schema:value pub.1092654511
96 rdf:type schema:PropertyValue
97 N70cdb269c84948e1932de8ee551b771a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Lactones
99 rdf:type schema:DefinedTerm
100 N79443182b00846e480988c5b595a3671 rdf:first Ncba5786f1b454f85a7a68763aeb6b38d
101 rdf:rest Nedaf5054397842d08c399e87cf33b670
102 N8198e7aff9584a20b219aa3827a90482 schema:name pubmed_id
103 schema:value 29130165
104 rdf:type schema:PropertyValue
105 Na6eeab45b23d48ccbdf48b64a232c0ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Quorum Sensing
107 rdf:type schema:DefinedTerm
108 Nc9248e7646124d9db854a1fd684bb2f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Fluorescence Resonance Energy Transfer
110 rdf:type schema:DefinedTerm
111 Ncba5786f1b454f85a7a68763aeb6b38d schema:familyName Leoni
112 schema:givenName Livia
113 rdf:type schema:Person
114 Ncdedfc6fd5ec4fc895caeeca10cd7cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Homoserine
116 rdf:type schema:DefinedTerm
117 Nce328601135e4052a7f6fced866e31d4 schema:location New York, NY
118 schema:name Springer New York
119 rdf:type schema:Organisation
120 Nd1e340ea415643e093c0fd91fd4ed3df schema:name doi
121 schema:value 10.1007/978-1-4939-7309-5_6
122 rdf:type schema:PropertyValue
123 Nedaf5054397842d08c399e87cf33b670 rdf:first N14c57fda387e473f9dcc7a29b444a98d
124 rdf:rest rdf:nil
125 Nee6e823302464faf8bb3d071877ec179 rdf:first sg:person.0610314665.35
126 rdf:rest rdf:nil
127 Nf53a51f721674b30be6d137e80f2785c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Fluorescent Dyes
129 rdf:type schema:DefinedTerm
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
134 schema:name Biochemistry and Cell Biology
135 rdf:type schema:DefinedTerm
136 sg:person.01202433763.94 schema:affiliation https://www.grid.ac/institutes/grid.422588.1
137 schema:familyName Rajamani
138 schema:givenName Sathish
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202433763.94
140 rdf:type schema:Person
141 sg:person.0610314665.35 schema:affiliation https://www.grid.ac/institutes/grid.422588.1
142 schema:familyName Sayre
143 schema:givenName Richard
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610314665.35
145 rdf:type schema:Person
146 sg:pub.10.1038/nbt0102-87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007758048
147 https://doi.org/10.1038/nbt0102-87
148 rdf:type schema:CreativeWork
149 sg:pub.10.1208/ps010202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043777867
150 https://doi.org/10.1208/ps010202
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1006/jmbi.1996.0645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016505346
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.mimet.2006.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053343
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/bi00592a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055181962
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/bi602479e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055206834
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ol047695j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056244982
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1046/j.1365-2958.2000.01913.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036860569
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.142089199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015532992
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.74.5.1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013584980
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1074/jbc.m111.230227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000062277
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1074/jbc.m301333200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016169961
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/emboj/cdg085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051969131
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/jn/129.12.2236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074554569
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1099/mic.0.c0117-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397910
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1110/ps.021860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360096
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1365-2958.1993.tb01737.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002572936
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1365-2958.1994.tb00422.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013743597
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1128/jb.186.12.3794-3805.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001066351
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.422588.1 schema:alternateName New Mexico Consortium
187 schema:name New Mexico Consortium
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...