Using Laser Capture Microdissection to Isolate Cortical Laminae in Nonhuman Primate Brain View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Brian A. Corgiat , Claudius Mueller

ABSTRACT

Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXT laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications. More... »

PAGES

115-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-6990-6_8

DOI

http://dx.doi.org/10.1007/978-1-4939-6990-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085406303

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28501997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laser Capture Microdissection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Specimen Handling", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Center for Applied Proteomics and Molecular Medicine, George Mason University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corgiat", 
        "givenName": "Brian A.", 
        "id": "sg:person.01044432634.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432634.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Center for Applied Proteomics and Molecular Medicine, George Mason University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Claudius", 
        "id": "sg:person.01016756551.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016756551.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-61779-163-5_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008480065", 
          "https://doi.org/10.1007/978-1-61779-163-5_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-163-5_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008480065", 
          "https://doi.org/10.1007/978-1-61779-163-5_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533968", 
          "https://doi.org/10.1038/labinvest.3700372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533968", 
          "https://doi.org/10.1038/labinvest.3700372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533968", 
          "https://doi.org/10.1038/labinvest.3700372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-216-2_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012253763", 
          "https://doi.org/10.1007/978-1-60327-216-2_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012789273", 
          "https://doi.org/10.1038/nprot.2006.85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012789273", 
          "https://doi.org/10.1038/nprot.2006.85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2012.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013265968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.903500402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019861619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnh185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020100026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2015.03.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021881233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2015.03.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021881233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027659561", 
          "https://doi.org/10.1186/1471-2164-7-97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pdm.0b013e3181857e92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028777006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pdm.0b013e3181857e92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028777006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2010.00031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033263260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/50308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035218235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891763", 
          "https://doi.org/10.1038/srep15456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnint.2010.00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036130626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)64749-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036534930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2015.12.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040880611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2015.12.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040880611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-13-2172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046069130", 
          "https://doi.org/10.1038/ncomms6547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-6410(02)00073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046113923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048927000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m700596-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048987772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2007.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049956023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.2000.00295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050414307", 
          "https://doi.org/10.1046/j.1523-1755.2000.00295.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1755.2000.00295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050414307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.230237997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052280931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2012.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053600371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00702-015-1414-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053625065", 
          "https://doi.org/10.1007/s00702-015-1414-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac1018974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055000762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac1018974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055000762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5289.998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/cbt.5.6.2676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072294145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074716520", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXT\u2122 laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications.", 
    "editor": [
      {
        "familyName": "Espina", 
        "givenName": "Virginia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-6990-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-6989-0", 
        "978-1-4939-6990-6"
      ], 
      "name": "Molecular Profiling", 
      "type": "Book"
    }, 
    "name": "Using Laser Capture Microdissection to Isolate Cortical Laminae in Nonhuman Primate Brain", 
    "pagination": "115-132", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-6990-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e986d19807d92a9e16cb6161b23f11acfa93acd515bbcb5b4ffe371c9b818fd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085406303"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28501997"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-6990-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1085406303"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000600.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-6990-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6990-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6990-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6990-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6990-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      23 PREDICATES      66 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-6990-6_8 schema:about N239a51cd7bd344fc84a4d756b7460c90
2 N49ae4b788e3d4a15b5dfb7db378469dc
3 N6c88682cacd94bbfb0eb71089f01bda4
4 Ndc953bb6e4ba43199be6ed597565fb87
5 Nf51be7f28d8f4d4282e6833e9e988289
6 Nfddac5352be9484dabb6fbcc034fff72
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N0cb61098a6d54b8f954d91aae8a5b007
10 schema:citation sg:pub.10.1007/978-1-60327-216-2_11
11 sg:pub.10.1007/978-1-61779-163-5_28
12 sg:pub.10.1007/s00702-015-1414-4
13 sg:pub.10.1038/labinvest.3700372
14 sg:pub.10.1038/ncomms6547
15 sg:pub.10.1038/nprot.2006.85
16 sg:pub.10.1038/srep15456
17 sg:pub.10.1046/j.1523-1755.2000.00295.x
18 sg:pub.10.1186/1471-2164-7-97
19 https://app.dimensions.ai/details/publication/pub.1074716520
20 https://doi.org/10.1002/cne.903500402
21 https://doi.org/10.1002/pmic.200300398
22 https://doi.org/10.1016/j.cub.2007.03.044
23 https://doi.org/10.1016/j.cub.2015.12.038
24 https://doi.org/10.1016/j.jneumeth.2012.02.023
25 https://doi.org/10.1016/j.jneumeth.2012.04.014
26 https://doi.org/10.1016/j.neuron.2015.03.047
27 https://doi.org/10.1016/s0002-9440(10)64749-9
28 https://doi.org/10.1016/s0926-6410(02)00073-3
29 https://doi.org/10.1021/ac1018974
30 https://doi.org/10.1046/j.1523-1755.2000.00295.x
31 https://doi.org/10.1073/pnas.230237997
32 https://doi.org/10.1074/mcp.m700596-mcp200
33 https://doi.org/10.1093/nar/gnh185
34 https://doi.org/10.1097/pdm.0b013e3181857e92
35 https://doi.org/10.1126/science.274.5289.998
36 https://doi.org/10.1158/0008-5472.can-13-2172
37 https://doi.org/10.1371/journal.pone.0023780
38 https://doi.org/10.3389/fnint.2010.00015
39 https://doi.org/10.3389/fnsys.2010.00031
40 https://doi.org/10.3791/50308
41 https://doi.org/10.4161/cbt.5.6.2676
42 schema:datePublished 2017
43 schema:datePublishedReg 2017-01-01
44 schema:description Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXT<sup>™</sup> laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications.
45 schema:editor Nb6e46e5cb1f54255b387de36b9f7e2e3
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Nf82eda548cc64218b25c90761d3c595e
50 schema:name Using Laser Capture Microdissection to Isolate Cortical Laminae in Nonhuman Primate Brain
51 schema:pagination 115-132
52 schema:productId N04e0d6c8f0004fcfb4d1580e69961e80
53 N0e4965492e7548af92bdceeebde946b7
54 N372a58ef8ac544c7913ab45cddab6321
55 N504c163b58914c38889a96528476f788
56 schema:publisher Nf1a35f8b47be48fea8d3eb8b1ec40726
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085406303
58 https://doi.org/10.1007/978-1-4939-6990-6_8
59 schema:sdDatePublished 2019-04-15T23:34
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ne0dab94687ff4985890e5a49aa0c3b70
62 schema:url http://link.springer.com/10.1007/978-1-4939-6990-6_8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N04e0d6c8f0004fcfb4d1580e69961e80 schema:name dimensions_id
67 schema:value pub.1085406303
68 rdf:type schema:PropertyValue
69 N0cb61098a6d54b8f954d91aae8a5b007 rdf:first sg:person.01044432634.65
70 rdf:rest N795ae8a5d4054c7b984cb9cc4a23e5d1
71 N0e4965492e7548af92bdceeebde946b7 schema:name doi
72 schema:value 10.1007/978-1-4939-6990-6_8
73 rdf:type schema:PropertyValue
74 N239a51cd7bd344fc84a4d756b7460c90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Primates
76 rdf:type schema:DefinedTerm
77 N372a58ef8ac544c7913ab45cddab6321 schema:name pubmed_id
78 schema:value 28501997
79 rdf:type schema:PropertyValue
80 N49ae4b788e3d4a15b5dfb7db378469dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Proteomics
82 rdf:type schema:DefinedTerm
83 N504c163b58914c38889a96528476f788 schema:name readcube_id
84 schema:value 2e986d19807d92a9e16cb6161b23f11acfa93acd515bbcb5b4ffe371c9b818fd
85 rdf:type schema:PropertyValue
86 N6c88682cacd94bbfb0eb71089f01bda4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Animals
88 rdf:type schema:DefinedTerm
89 N795ae8a5d4054c7b984cb9cc4a23e5d1 rdf:first sg:person.01016756551.49
90 rdf:rest rdf:nil
91 Nb6e46e5cb1f54255b387de36b9f7e2e3 rdf:first Ncf9d71d08e3e4b2dba53734275a118bd
92 rdf:rest rdf:nil
93 Ncf9d71d08e3e4b2dba53734275a118bd schema:familyName Espina
94 schema:givenName Virginia
95 rdf:type schema:Person
96 Ndc953bb6e4ba43199be6ed597565fb87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Laser Capture Microdissection
98 rdf:type schema:DefinedTerm
99 Ne0dab94687ff4985890e5a49aa0c3b70 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nf1a35f8b47be48fea8d3eb8b1ec40726 schema:location New York, NY
102 schema:name Springer New York
103 rdf:type schema:Organisation
104 Nf51be7f28d8f4d4282e6833e9e988289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Brain
106 rdf:type schema:DefinedTerm
107 Nf82eda548cc64218b25c90761d3c595e schema:isbn 978-1-4939-6989-0
108 978-1-4939-6990-6
109 schema:name Molecular Profiling
110 rdf:type schema:Book
111 Nfddac5352be9484dabb6fbcc034fff72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Specimen Handling
113 rdf:type schema:DefinedTerm
114 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biological Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biochemistry and Cell Biology
119 rdf:type schema:DefinedTerm
120 sg:person.01016756551.49 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
121 schema:familyName Mueller
122 schema:givenName Claudius
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016756551.49
124 rdf:type schema:Person
125 sg:person.01044432634.65 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
126 schema:familyName Corgiat
127 schema:givenName Brian A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432634.65
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-60327-216-2_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253763
131 https://doi.org/10.1007/978-1-60327-216-2_11
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-1-61779-163-5_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008480065
134 https://doi.org/10.1007/978-1-61779-163-5_28
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00702-015-1414-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053625065
137 https://doi.org/10.1007/s00702-015-1414-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/labinvest.3700372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008533968
140 https://doi.org/10.1038/labinvest.3700372
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms6547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046069130
143 https://doi.org/10.1038/ncomms6547
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nprot.2006.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012789273
146 https://doi.org/10.1038/nprot.2006.85
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/srep15456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891763
149 https://doi.org/10.1038/srep15456
150 rdf:type schema:CreativeWork
151 sg:pub.10.1046/j.1523-1755.2000.00295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050414307
152 https://doi.org/10.1046/j.1523-1755.2000.00295.x
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2164-7-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027659561
155 https://doi.org/10.1186/1471-2164-7-97
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1074716520 schema:CreativeWork
158 https://doi.org/10.1002/cne.903500402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672202
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/pmic.200300398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019861619
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.cub.2007.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049956023
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cub.2015.12.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040880611
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jneumeth.2012.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053600371
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jneumeth.2012.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013265968
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.neuron.2015.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021881233
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0002-9440(10)64749-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036534930
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0926-6410(02)00073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046113923
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ac1018974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055000762
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1046/j.1523-1755.2000.00295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050414307
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.230237997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052280931
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1074/mcp.m700596-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048987772
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/nar/gnh185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020100026
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1097/pdm.0b013e3181857e92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028777006
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.274.5289.998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554765
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1158/0008-5472.can-13-2172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042933439
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0023780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048927000
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3389/fnint.2010.00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130626
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3389/fnsys.2010.00031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033263260
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3791/50308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035218235
199 rdf:type schema:CreativeWork
200 https://doi.org/10.4161/cbt.5.6.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072294145
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
203 schema:name Center for Applied Proteomics and Molecular Medicine, George Mason University
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...