Prediction of Proteases Involved in Peptide Generation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-03-18

AUTHORS

Mercedes Arguello Casteleiro , Robert Stevens , Julie Klein

ABSTRACT

Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations. More... »

PAGES

205-213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15

DOI

http://dx.doi.org/10.1007/978-1-4939-6850-3_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084503568

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28315253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Hydrolases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Web Browser", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casteleiro", 
        "givenName": "Mercedes Arguello", 
        "id": "sg:person.014244511443.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244511443.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Robert", 
        "id": "sg:person.0653547307.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Toulouse III Paul-Sabatier, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Institute of Cardiovascular and Metabolic Disease, INSERM U1048, Toulouse, France", 
            "Universit\u00e9 Toulouse III Paul-Sabatier, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Julie", 
        "id": "sg:person.012753044447.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-18", 
    "datePublishedReg": "2017-03-18", 
    "description": "Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations.", 
    "editor": [
      {
        "familyName": "Schilling", 
        "givenName": "Oliver", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-6850-3_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-6849-7", 
        "978-1-4939-6850-3"
      ], 
      "name": "Protein Terminal Profiling", 
      "type": "Book"
    }, 
    "keywords": [
      "disease-associated peptides", 
      "peptide biomarkers", 
      "clinical proteomics", 
      "peptide list", 
      "peptide generation", 
      "protein fragments", 
      "proteomics", 
      "peptides", 
      "silico", 
      "linking", 
      "generation", 
      "fragments", 
      "conditions", 
      "mechanism", 
      "activity", 
      "cardiovascular disease", 
      "pathophysiological mechanisms", 
      "identification", 
      "protease", 
      "tool", 
      "substantial number", 
      "disease", 
      "silico prediction tools", 
      "understanding", 
      "cancer", 
      "kidney", 
      "protease activity", 
      "site reconstruction", 
      "prediction", 
      "biomarkers", 
      "association", 
      "number", 
      "prediction tools", 
      "reconstruction", 
      "list", 
      "Proteasix", 
      "peptide-centric tool", 
      "input peptide list", 
      "automatic cleavage site reconstruction", 
      "cleavage site reconstruction", 
      "protease associations", 
      "Prediction of Proteases"
    ], 
    "name": "Prediction of Proteases Involved in Peptide Generation", 
    "pagination": "205-213", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084503568"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-6850-3_15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28315253"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-6850-3_15", 
      "https://app.dimensions.ai/details/publication/pub.1084503568"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_285.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-6850-3_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      79 URIs      72 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-6850-3_15 schema:about N07925db100d74dd082793734b49660e0
2 N089ea0bfa1de4c3f916e5665a9909f2d
3 N090d46a889c146759d180e886ac33d97
4 N1efb023eda6541a7afbf66d85be613a5
5 N5be2762dc24c4bec9fcbff70010d6a46
6 N63fc3f8080384e209d084e6095f46e48
7 N6f93080cf8cc4b1d95d97e8bdddbed40
8 N75d57f5a1b7b496a82f258ab1a6369c5
9 N8b59eb9cb1a544bbaa8a105082d5c091
10 Ne4aacc9703c142a5808c935f6e48041f
11 Nff80d8a43f154681ab10a4678fd9f7c3
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nfb73a6ed47604627956a77c63a3a58fd
15 schema:datePublished 2017-03-18
16 schema:datePublishedReg 2017-03-18
17 schema:description Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations.
18 schema:editor Na10565ff4e1b4d73964134a6f1bff1e8
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N0068b3a871db4e36bb07875e3c4e232b
23 schema:keywords Prediction of Proteases
24 Proteasix
25 activity
26 association
27 automatic cleavage site reconstruction
28 biomarkers
29 cancer
30 cardiovascular disease
31 cleavage site reconstruction
32 clinical proteomics
33 conditions
34 disease
35 disease-associated peptides
36 fragments
37 generation
38 identification
39 input peptide list
40 kidney
41 linking
42 list
43 mechanism
44 number
45 pathophysiological mechanisms
46 peptide biomarkers
47 peptide generation
48 peptide list
49 peptide-centric tool
50 peptides
51 prediction
52 prediction tools
53 protease
54 protease activity
55 protease associations
56 protein fragments
57 proteomics
58 reconstruction
59 silico
60 silico prediction tools
61 site reconstruction
62 substantial number
63 tool
64 understanding
65 schema:name Prediction of Proteases Involved in Peptide Generation
66 schema:pagination 205-213
67 schema:productId N0c447161c7c64e5da985e1f16ff7d11f
68 N983a5f511a3b4373bd457ba5a332df18
69 Nf652e7c68eea403987e18546e4ea1585
70 schema:publisher Nbc31bae96ada47baaaa73cf46f6a3bcc
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084503568
72 https://doi.org/10.1007/978-1-4939-6850-3_15
73 schema:sdDatePublished 2022-01-01T19:16
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nad4046aa31584bbab23c0b0f2eb592fc
76 schema:url https://doi.org/10.1007/978-1-4939-6850-3_15
77 sgo:license sg:explorer/license/
78 sgo:sdDataset chapters
79 rdf:type schema:Chapter
80 N0068b3a871db4e36bb07875e3c4e232b schema:isbn 978-1-4939-6849-7
81 978-1-4939-6850-3
82 schema:name Protein Terminal Profiling
83 rdf:type schema:Book
84 N07925db100d74dd082793734b49660e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Peptide Hydrolases
86 rdf:type schema:DefinedTerm
87 N089ea0bfa1de4c3f916e5665a9909f2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Proteomics
89 rdf:type schema:DefinedTerm
90 N090d46a889c146759d180e886ac33d97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Biomarkers
92 rdf:type schema:DefinedTerm
93 N0c447161c7c64e5da985e1f16ff7d11f schema:name dimensions_id
94 schema:value pub.1084503568
95 rdf:type schema:PropertyValue
96 N1efb023eda6541a7afbf66d85be613a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Computational Biology
98 rdf:type schema:DefinedTerm
99 N2c9f1e1a138240a893aa412b55e6a4bd rdf:first sg:person.0653547307.62
100 rdf:rest N741ed5e16363403d901106fd0cd55266
101 N5be2762dc24c4bec9fcbff70010d6a46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Catalytic Domain
103 rdf:type schema:DefinedTerm
104 N63fc3f8080384e209d084e6095f46e48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Databases, Protein
106 rdf:type schema:DefinedTerm
107 N6f93080cf8cc4b1d95d97e8bdddbed40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Web Browser
109 rdf:type schema:DefinedTerm
110 N741ed5e16363403d901106fd0cd55266 rdf:first sg:person.012753044447.84
111 rdf:rest rdf:nil
112 N75d57f5a1b7b496a82f258ab1a6369c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Peptides
114 rdf:type schema:DefinedTerm
115 N8b59eb9cb1a544bbaa8a105082d5c091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Proteolysis
117 rdf:type schema:DefinedTerm
118 N983a5f511a3b4373bd457ba5a332df18 schema:name doi
119 schema:value 10.1007/978-1-4939-6850-3_15
120 rdf:type schema:PropertyValue
121 Na10565ff4e1b4d73964134a6f1bff1e8 rdf:first Nc9bc96d70b9a418eaa11fae24492e8ef
122 rdf:rest rdf:nil
123 Nad4046aa31584bbab23c0b0f2eb592fc schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nbc31bae96ada47baaaa73cf46f6a3bcc schema:name Springer Nature
126 rdf:type schema:Organisation
127 Nc9bc96d70b9a418eaa11fae24492e8ef schema:familyName Schilling
128 schema:givenName Oliver
129 rdf:type schema:Person
130 Ne4aacc9703c142a5808c935f6e48041f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Species Specificity
132 rdf:type schema:DefinedTerm
133 Nf652e7c68eea403987e18546e4ea1585 schema:name pubmed_id
134 schema:value 28315253
135 rdf:type schema:PropertyValue
136 Nfb73a6ed47604627956a77c63a3a58fd rdf:first sg:person.014244511443.44
137 rdf:rest N2c9f1e1a138240a893aa412b55e6a4bd
138 Nff80d8a43f154681ab10a4678fd9f7c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Proteome
140 rdf:type schema:DefinedTerm
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biochemistry and Cell Biology
146 rdf:type schema:DefinedTerm
147 sg:person.012753044447.84 schema:affiliation grid-institutes:grid.15781.3a
148 schema:familyName Klein
149 schema:givenName Julie
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84
151 rdf:type schema:Person
152 sg:person.014244511443.44 schema:affiliation grid-institutes:grid.5379.8
153 schema:familyName Casteleiro
154 schema:givenName Mercedes Arguello
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244511443.44
156 rdf:type schema:Person
157 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
158 schema:familyName Stevens
159 schema:givenName Robert
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
161 rdf:type schema:Person
162 grid-institutes:grid.15781.3a schema:alternateName Université Toulouse III Paul-Sabatier, Toulouse, France
163 schema:name Institute of Cardiovascular and Metabolic Disease, INSERM U1048, Toulouse, France
164 Université Toulouse III Paul-Sabatier, Toulouse, France
165 rdf:type schema:Organization
166 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Oxford Road, Manchester, UK
167 schema:name School of Computer Science, University of Manchester, Oxford Road, Manchester, UK
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...