Prediction of Proteases Involved in Peptide Generation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-03-18

AUTHORS

Mercedes Arguello Casteleiro , Robert Stevens , Julie Klein

ABSTRACT

Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations. More... »

PAGES

205-213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15

DOI

http://dx.doi.org/10.1007/978-1-4939-6850-3_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084503568

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28315253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Hydrolases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Web Browser", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casteleiro", 
        "givenName": "Mercedes Arguello", 
        "id": "sg:person.014244511443.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244511443.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Oxford Road, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Robert", 
        "id": "sg:person.0653547307.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Toulouse III Paul-Sabatier, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Institute of Cardiovascular and Metabolic Disease, INSERM U1048, Toulouse, France", 
            "Universit\u00e9 Toulouse III Paul-Sabatier, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Julie", 
        "id": "sg:person.012753044447.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-18", 
    "datePublishedReg": "2017-03-18", 
    "description": "Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations.", 
    "editor": [
      {
        "familyName": "Schilling", 
        "givenName": "Oliver", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-6850-3_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-6849-7", 
        "978-1-4939-6850-3"
      ], 
      "name": "Protein Terminal Profiling", 
      "type": "Book"
    }, 
    "keywords": [
      "disease-associated peptides", 
      "peptide biomarkers", 
      "clinical proteomics", 
      "peptide list", 
      "peptide generation", 
      "protein fragments", 
      "proteomics", 
      "peptides", 
      "silico", 
      "linking", 
      "generation", 
      "fragments", 
      "conditions", 
      "mechanism", 
      "activity", 
      "cardiovascular disease", 
      "pathophysiological mechanisms", 
      "identification", 
      "protease", 
      "tool", 
      "substantial number", 
      "disease", 
      "silico prediction tools", 
      "understanding", 
      "cancer", 
      "kidney", 
      "protease activity", 
      "site reconstruction", 
      "prediction", 
      "biomarkers", 
      "association", 
      "number", 
      "prediction tools", 
      "reconstruction", 
      "list", 
      "Proteasix", 
      "peptide-centric tool", 
      "input peptide list", 
      "automatic cleavage site reconstruction", 
      "cleavage site reconstruction", 
      "protease associations", 
      "Prediction of Proteases"
    ], 
    "name": "Prediction of Proteases Involved in Peptide Generation", 
    "pagination": "205-213", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084503568"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-6850-3_15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28315253"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-6850-3_15", 
      "https://app.dimensions.ai/details/publication/pub.1084503568"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_144.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-6850-3_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6850-3_15'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      79 URIs      72 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-6850-3_15 schema:about N0b7eb011b4b84c1ea4fc9123c0174ed3
2 N134443d37d73419c94d2c57f124ccabb
3 N177baf0882f24052bbe06c933c105ee3
4 N312c16c9e4fb44a9adfe8abc7b0fd805
5 N4519dc29c2b34082bac4309bff973c22
6 N6570ce66c3a44b5c9a40384dd58218cb
7 N98a507c4b57d44a2ba0d4f7e9f138192
8 Na8dfd2129ece4c768f6e36291de59fce
9 Nada361d23b86434e8cd2edc478e5fb95
10 Nd0e3fac4230049289fc93b09073a1ca3
11 Nffdc681ead2f4c58b42e8282c9a6cae4
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Ncf1e21778ae242888cd644f8d1964bce
15 schema:datePublished 2017-03-18
16 schema:datePublishedReg 2017-03-18
17 schema:description Clinical proteomics has led to the identification of a substantial number of disease-associated peptides and protein fragments in several conditions such as cancer, kidney, or cardiovascular diseases. In silico prediction tools that can facilitate linking of identified peptide biomarkers to predicted protease activity might therefore significantly contribute to the understanding of pathophysiological mechanisms of these diseases. Proteasix is an open-source, peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. From an input peptide list, Proteasix allows for automatic cleavage site reconstruction and protease associations.
18 schema:editor N24a722b7334148eb96f1f8601268cb20
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N1318d7a85148452d9c993d51c98a2696
23 schema:keywords Prediction of Proteases
24 Proteasix
25 activity
26 association
27 automatic cleavage site reconstruction
28 biomarkers
29 cancer
30 cardiovascular disease
31 cleavage site reconstruction
32 clinical proteomics
33 conditions
34 disease
35 disease-associated peptides
36 fragments
37 generation
38 identification
39 input peptide list
40 kidney
41 linking
42 list
43 mechanism
44 number
45 pathophysiological mechanisms
46 peptide biomarkers
47 peptide generation
48 peptide list
49 peptide-centric tool
50 peptides
51 prediction
52 prediction tools
53 protease
54 protease activity
55 protease associations
56 protein fragments
57 proteomics
58 reconstruction
59 silico
60 silico prediction tools
61 site reconstruction
62 substantial number
63 tool
64 understanding
65 schema:name Prediction of Proteases Involved in Peptide Generation
66 schema:pagination 205-213
67 schema:productId N586a8d496e324bafa61a388ca0c85a38
68 N7733e2f0a9df45a7ae6ee51aa28495f6
69 N848393a6e5fe4ea88303fbb31d2aa50e
70 schema:publisher Nde92e2629c7e489485c08111a0117ead
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084503568
72 https://doi.org/10.1007/978-1-4939-6850-3_15
73 schema:sdDatePublished 2021-12-01T19:57
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N48165007feeb438dac9f5b8984007e61
76 schema:url https://doi.org/10.1007/978-1-4939-6850-3_15
77 sgo:license sg:explorer/license/
78 sgo:sdDataset chapters
79 rdf:type schema:Chapter
80 N0b7eb011b4b84c1ea4fc9123c0174ed3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Peptides
82 rdf:type schema:DefinedTerm
83 N1318d7a85148452d9c993d51c98a2696 schema:isbn 978-1-4939-6849-7
84 978-1-4939-6850-3
85 schema:name Protein Terminal Profiling
86 rdf:type schema:Book
87 N134443d37d73419c94d2c57f124ccabb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Biomarkers
89 rdf:type schema:DefinedTerm
90 N177baf0882f24052bbe06c933c105ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Species Specificity
92 rdf:type schema:DefinedTerm
93 N24a722b7334148eb96f1f8601268cb20 rdf:first N994dabaa3b3f4dc7b5189d62f6515274
94 rdf:rest rdf:nil
95 N312c16c9e4fb44a9adfe8abc7b0fd805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Databases, Protein
97 rdf:type schema:DefinedTerm
98 N4519dc29c2b34082bac4309bff973c22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Proteolysis
100 rdf:type schema:DefinedTerm
101 N48165007feeb438dac9f5b8984007e61 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N586a8d496e324bafa61a388ca0c85a38 schema:name pubmed_id
104 schema:value 28315253
105 rdf:type schema:PropertyValue
106 N6570ce66c3a44b5c9a40384dd58218cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Catalytic Domain
108 rdf:type schema:DefinedTerm
109 N6eac1173592f48d189c6ffee4f5d53fe rdf:first sg:person.012753044447.84
110 rdf:rest rdf:nil
111 N7733e2f0a9df45a7ae6ee51aa28495f6 schema:name doi
112 schema:value 10.1007/978-1-4939-6850-3_15
113 rdf:type schema:PropertyValue
114 N848393a6e5fe4ea88303fbb31d2aa50e schema:name dimensions_id
115 schema:value pub.1084503568
116 rdf:type schema:PropertyValue
117 N98a507c4b57d44a2ba0d4f7e9f138192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Web Browser
119 rdf:type schema:DefinedTerm
120 N994dabaa3b3f4dc7b5189d62f6515274 schema:familyName Schilling
121 schema:givenName Oliver
122 rdf:type schema:Person
123 Na8dfd2129ece4c768f6e36291de59fce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Peptide Hydrolases
125 rdf:type schema:DefinedTerm
126 Nada361d23b86434e8cd2edc478e5fb95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Computational Biology
128 rdf:type schema:DefinedTerm
129 Ncf1e21778ae242888cd644f8d1964bce rdf:first sg:person.014244511443.44
130 rdf:rest Nf0a22c10e3ba470795631e07aae0dbf9
131 Nd0e3fac4230049289fc93b09073a1ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Proteomics
133 rdf:type schema:DefinedTerm
134 Nde92e2629c7e489485c08111a0117ead schema:name Springer Nature
135 rdf:type schema:Organisation
136 Nf0a22c10e3ba470795631e07aae0dbf9 rdf:first sg:person.0653547307.62
137 rdf:rest N6eac1173592f48d189c6ffee4f5d53fe
138 Nffdc681ead2f4c58b42e8282c9a6cae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Proteome
140 rdf:type schema:DefinedTerm
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biochemistry and Cell Biology
146 rdf:type schema:DefinedTerm
147 sg:person.012753044447.84 schema:affiliation grid-institutes:grid.15781.3a
148 schema:familyName Klein
149 schema:givenName Julie
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753044447.84
151 rdf:type schema:Person
152 sg:person.014244511443.44 schema:affiliation grid-institutes:grid.5379.8
153 schema:familyName Casteleiro
154 schema:givenName Mercedes Arguello
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244511443.44
156 rdf:type schema:Person
157 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
158 schema:familyName Stevens
159 schema:givenName Robert
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
161 rdf:type schema:Person
162 grid-institutes:grid.15781.3a schema:alternateName Université Toulouse III Paul-Sabatier, Toulouse, France
163 schema:name Institute of Cardiovascular and Metabolic Disease, INSERM U1048, Toulouse, France
164 Université Toulouse III Paul-Sabatier, Toulouse, France
165 rdf:type schema:Organization
166 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Oxford Road, Manchester, UK
167 schema:name School of Computer Science, University of Manchester, Oxford Road, Manchester, UK
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...