Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-11-12

AUTHORS

Uwe Himmelreich , Tania C. Sorrell , Heide-Marie Daniel

ABSTRACT

Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments. More... »

PAGES

289-304

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-6515-1_17

DOI

http://dx.doi.org/10.1007/978-1-4939-6515-1_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034695967

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27837512


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycoses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Herestraat 49, O&N 1, Box 505, 3000, Leuven, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Herestraat 49, O&N 1, Box 505, 3000, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himmelreich", 
        "givenName": "Uwe", 
        "id": "sg:person.01251262243.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.413252.3", 
          "name": [
            "Westmead Millennium Institute, Centre for Infectious Diseases and Microbiology, University of Sydney, Sydney, NSW, Australia", 
            "Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorrell", 
        "givenName": "Tania C.", 
        "id": "sg:person.01003151017.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Mycology, Applied Microbiology, Earth and Life Institute, Mycoth\u00e8que de l\u2019Universit\u00e9 catholique de Louvain (BCCM/MUCL), Universit\u00e9 catholique de Lovain, Louvain-la-Neuve, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Laboratory of Mycology, Applied Microbiology, Earth and Life Institute, Mycoth\u00e8que de l\u2019Universit\u00e9 catholique de Louvain (BCCM/MUCL), Universit\u00e9 catholique de Lovain, Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Heide-Marie", 
        "id": "sg:person.0645225565.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645225565.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-11-12", 
    "datePublishedReg": "2016-11-12", 
    "description": "Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.", 
    "editor": [
      {
        "familyName": "Lion", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-6515-1_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-6513-7", 
        "978-1-4939-6515-1"
      ], 
      "name": "Human Fungal Pathogen Identification", 
      "type": "Book"
    }, 
    "keywords": [
      "nuclear magnetic resonance spectroscopy", 
      "magnetic resonance spectroscopy", 
      "resonance spectroscopy", 
      "NMR spectroscopy", 
      "sample preparation", 
      "spectroscopy", 
      "chemical composition", 
      "NMR", 
      "sample delivery", 
      "high-throughput identification", 
      "low running cost", 
      "metabolite profiles", 
      "preparation", 
      "high throughput", 
      "composition", 
      "potential advantages", 
      "different environments", 
      "potential", 
      "metabolic pathways", 
      "identification", 
      "samples", 
      "delivery", 
      "cost-efficient way", 
      "running costs", 
      "addition", 
      "analysis", 
      "rapid turnaround time", 
      "method", 
      "advantages", 
      "large number", 
      "accurate identification", 
      "pathway", 
      "environment", 
      "profile", 
      "laboratory", 
      "strategies", 
      "time", 
      "results", 
      "yeast", 
      "initial results", 
      "computer-based method", 
      "development", 
      "throughput", 
      "turnaround time", 
      "DNA-based identification", 
      "data acquisition", 
      "way", 
      "number", 
      "roadmap", 
      "cost", 
      "data", 
      "complex data", 
      "levels", 
      "classification strategy", 
      "analysis algorithm", 
      "clinical yeast", 
      "consumption", 
      "mycological laboratories", 
      "assessment", 
      "algorithm", 
      "subspecies level", 
      "identification of yeasts", 
      "acquisition", 
      "database", 
      "media consumption", 
      "yeast identification"
    ], 
    "name": "Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast", 
    "pagination": "289-304", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034695967"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-6515-1_17"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27837512"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-6515-1_17", 
      "https://app.dimensions.ai/details/publication/pub.1034695967"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_336.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-6515-1_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6515-1_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6515-1_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6515-1_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-6515-1_17'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      95 URIs      88 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-6515-1_17 schema:about N01e73235a1604fe9b1ee2e468a236831
2 N651762ab98d242c19208ba4a979f0467
3 N6aa6f9efd0524ce0a5ffcb56ffc15ac0
4 Nd4b95bff778e4f10b16045788f154309
5 anzsrc-for:03
6 anzsrc-for:0301
7 schema:author Na4a6bb4d30e842f1b36089ea0ca1cd31
8 schema:datePublished 2016-11-12
9 schema:datePublishedReg 2016-11-12
10 schema:description Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.
11 schema:editor Nc38e2f66963d40058fbd44a696fe32d2
12 schema:genre chapter
13 schema:isAccessibleForFree false
14 schema:isPartOf N85efc2b7628e4231a3cd42e15bb3bd72
15 schema:keywords DNA-based identification
16 NMR
17 NMR spectroscopy
18 accurate identification
19 acquisition
20 addition
21 advantages
22 algorithm
23 analysis
24 analysis algorithm
25 assessment
26 chemical composition
27 classification strategy
28 clinical yeast
29 complex data
30 composition
31 computer-based method
32 consumption
33 cost
34 cost-efficient way
35 data
36 data acquisition
37 database
38 delivery
39 development
40 different environments
41 environment
42 high throughput
43 high-throughput identification
44 identification
45 identification of yeasts
46 initial results
47 laboratory
48 large number
49 levels
50 low running cost
51 magnetic resonance spectroscopy
52 media consumption
53 metabolic pathways
54 metabolite profiles
55 method
56 mycological laboratories
57 nuclear magnetic resonance spectroscopy
58 number
59 pathway
60 potential
61 potential advantages
62 preparation
63 profile
64 rapid turnaround time
65 resonance spectroscopy
66 results
67 roadmap
68 running costs
69 sample delivery
70 sample preparation
71 samples
72 spectroscopy
73 strategies
74 subspecies level
75 throughput
76 time
77 turnaround time
78 way
79 yeast
80 yeast identification
81 schema:name Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast
82 schema:pagination 289-304
83 schema:productId N095b392265aa471aab017ba549a2fdba
84 N2f94cdc53b0947e2a42dcc5e085b93ad
85 N8eb75347a9b240cfbdd6e5395ce18edd
86 schema:publisher Nc9083b8686824271a03c3e6f44b56c52
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034695967
88 https://doi.org/10.1007/978-1-4939-6515-1_17
89 schema:sdDatePublished 2022-12-01T06:51
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N0fa22a879d6d4202818b3cfc414d048f
92 schema:url https://doi.org/10.1007/978-1-4939-6515-1_17
93 sgo:license sg:explorer/license/
94 sgo:sdDataset chapters
95 rdf:type schema:Chapter
96 N01e73235a1604fe9b1ee2e468a236831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Yeasts
98 rdf:type schema:DefinedTerm
99 N095b392265aa471aab017ba549a2fdba schema:name dimensions_id
100 schema:value pub.1034695967
101 rdf:type schema:PropertyValue
102 N0fa22a879d6d4202818b3cfc414d048f schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N2f94cdc53b0947e2a42dcc5e085b93ad schema:name doi
105 schema:value 10.1007/978-1-4939-6515-1_17
106 rdf:type schema:PropertyValue
107 N58c202b972ff404dbdbc3cc3b70bc920 rdf:first sg:person.01003151017.13
108 rdf:rest N6cee07cc637a48b692e224d77609ab83
109 N651762ab98d242c19208ba4a979f0467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 N6aa6f9efd0524ce0a5ffcb56ffc15ac0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Mycoses
114 rdf:type schema:DefinedTerm
115 N6cee07cc637a48b692e224d77609ab83 rdf:first sg:person.0645225565.32
116 rdf:rest rdf:nil
117 N85efc2b7628e4231a3cd42e15bb3bd72 schema:isbn 978-1-4939-6513-7
118 978-1-4939-6515-1
119 schema:name Human Fungal Pathogen Identification
120 rdf:type schema:Book
121 N8eb75347a9b240cfbdd6e5395ce18edd schema:name pubmed_id
122 schema:value 27837512
123 rdf:type schema:PropertyValue
124 Na4a6bb4d30e842f1b36089ea0ca1cd31 rdf:first sg:person.01251262243.56
125 rdf:rest N58c202b972ff404dbdbc3cc3b70bc920
126 Nad2d5fe9c8bf4fdfb0872c3e587a1e8e schema:familyName Lion
127 schema:givenName Thomas
128 rdf:type schema:Person
129 Nc38e2f66963d40058fbd44a696fe32d2 rdf:first Nad2d5fe9c8bf4fdfb0872c3e587a1e8e
130 rdf:rest rdf:nil
131 Nc9083b8686824271a03c3e6f44b56c52 schema:name Springer Nature
132 rdf:type schema:Organisation
133 Nd4b95bff778e4f10b16045788f154309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Magnetic Resonance Spectroscopy
135 rdf:type schema:DefinedTerm
136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
137 schema:name Chemical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
140 schema:name Analytical Chemistry
141 rdf:type schema:DefinedTerm
142 sg:person.01003151017.13 schema:affiliation grid-institutes:grid.413252.3
143 schema:familyName Sorrell
144 schema:givenName Tania C.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003151017.13
146 rdf:type schema:Person
147 sg:person.01251262243.56 schema:affiliation grid-institutes:grid.5596.f
148 schema:familyName Himmelreich
149 schema:givenName Uwe
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251262243.56
151 rdf:type schema:Person
152 sg:person.0645225565.32 schema:affiliation grid-institutes:grid.7942.8
153 schema:familyName Daniel
154 schema:givenName Heide-Marie
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645225565.32
156 rdf:type schema:Person
157 grid-institutes:grid.413252.3 schema:alternateName Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia
158 schema:name Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia
159 Westmead Millennium Institute, Centre for Infectious Diseases and Microbiology, University of Sydney, Sydney, NSW, Australia
160 rdf:type schema:Organization
161 grid-institutes:grid.5596.f schema:alternateName Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Herestraat 49, O&N 1, Box 505, 3000, Leuven, Belgium
162 schema:name Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Herestraat 49, O&N 1, Box 505, 3000, Leuven, Belgium
163 rdf:type schema:Organization
164 grid-institutes:grid.7942.8 schema:alternateName Laboratory of Mycology, Applied Microbiology, Earth and Life Institute, Mycothèque de l’Université catholique de Louvain (BCCM/MUCL), Université catholique de Lovain, Louvain-la-Neuve, Belgium
165 schema:name Laboratory of Mycology, Applied Microbiology, Earth and Life Institute, Mycothèque de l’Université catholique de Louvain (BCCM/MUCL), Université catholique de Lovain, Louvain-la-Neuve, Belgium
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...