ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Audrey L. Karperien , Herbert F. Jelinek

ABSTRACT

To explore questions asked in neuroscience, neuroscientists rely heavily on the tools available. One such toolset is ImageJ, open-source, free, biological digital image analysis software. Open-source software has matured alongside of fractal analysis in neuroscience, and today ImageJ is not a niche but a foundation relied on by a substantial number of neuroscientists for work in diverse fields including fractal analysis. This is largely owing to two features of open-source software leveraged in ImageJ and vital to vigorous neuroscience: customizability and collaboration. With those notions in mind, this chapter’s aim is threefold: (1) it introduces ImageJ, (2) it outlines ways this software tool has influenced fractal analysis in neuroscience and shaped the questions researchers devote time to, and (3) it reviews a few examples of ways investigators have developed and used ImageJ for pattern extraction in fractal analysis. Throughout this chapter, the focus is on fostering a collaborative and creative mindset for translating knowledge of the fractal geometry of the brain into clinical reality. More... »

PAGES

503-522

References to SciGraph publications

  • 2013-12. Quantification of left ventricular trabeculae using fractal analysis in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2014-02. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images in NATURE PROTOCOLS
  • 2007-12. Fluid-fluid interaction during miscible and immiscible displacement under ultrasonic waves in THE EUROPEAN PHYSICAL JOURNAL B
  • 2013-12. Analyzing huge pathology images with open source software in DIAGNOSTIC PATHOLOGY
  • 2012-07. The quest for quantitative microscopy in NATURE METHODS
  • 2012-07. Fiji: an open-source platform for biological-image analysis in NATURE METHODS
  • 2012-07. NIH Image to ImageJ: 25 years of image analysis in NATURE METHODS
  • 2012-08. Image Analysis Tools for Evaluation of Microscopic Views of Immunohistochemically Stained Specimen in Medical Research–a Review in JOURNAL OF MEDICAL SYSTEMS
  • 2008-05. L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies in NATURE PROTOCOLS
  • 2008-12. Fractal parameters and vascular networks: facts & artifacts in THEORETICAL BIOLOGY AND MEDICAL MODELLING
  • 2014-10. Neuronal morphometry directly from bitmap images in NATURE METHODS
  • 2014. Shading Correction for Whole Slide Image Using Low Rank and Sparse Decomposition in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2014
  • 2005-06. Creation of DICOM—Aware Applications Using ImageJ in JOURNAL OF DIGITAL IMAGING
  • 2010-12. A high-level 3D visualization API for Java and ImageJ in BMC BIOINFORMATICS
  • 2011-12. NeurphologyJ: An automatic neuronal morphology quantification method and its application in pharmacological discovery in BMC BIOINFORMATICS
  • 2011-09. Automated Tracing of Neurites from Light Microscopy Stacks of Images in NEUROINFORMATICS
  • 2005. Fractal Analysis: Pitfalls and Revelations in Neuroscience in FRACTALS IN BIOLOGY AND MEDICINE
  • Book

    TITLE

    The Fractal Geometry of the Brain

    ISBN

    978-1-4939-3993-0
    978-1-4939-3995-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_32

    DOI

    http://dx.doi.org/10.1007/978-1-4939-3995-4_32

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031864996


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Charles Sturt University", 
              "id": "https://www.grid.ac/institutes/grid.1037.5", 
              "name": [
                "School of Community Health & Centre for Research in Complex Systems, Charles Sturt University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karperien", 
            "givenName": "Audrey L.", 
            "id": "sg:person.01212725112.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212725112.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles Sturt University", 
              "id": "https://www.grid.ac/institutes/grid.1037.5", 
              "name": [
                "School of Community Health & Centre for Research in Complex Systems, Charles Sturt University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jelinek", 
            "givenName": "Herbert F.", 
            "id": "sg:person.0734237124.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734237124.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.05.089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002634411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cyto.a.20022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002906095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2009.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003674846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12021-011-9121-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003799593", 
              "https://doi.org/10.1007/s12021-011-9121-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cyto.a.22408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005220806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0186-10.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006813738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10404-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008054412", 
              "https://doi.org/10.1007/978-3-319-10404-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008714942", 
              "https://doi.org/10.1038/nprot.2008.51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroscience.2009.04.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008868353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cll.2012.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009478855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/opth.s1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011448136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2010.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014547850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2010.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014547850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fbioe.2014.00034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014932302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.06.072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014936455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.201004104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015106753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2007.08.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017082296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1431927614012811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019040157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-7643-7412-8_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019341972", 
              "https://doi.org/10.1007/3-7643-7412-8_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-15-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019455247", 
              "https://doi.org/10.1186/1532-429x-15-36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bone.2010.08.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020538185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023026506", 
              "https://doi.org/10.1038/nmeth.3125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024022524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cyto.a.20895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024364236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cyto.a.20895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024364236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.00485.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024548423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024694299", 
              "https://doi.org/10.1186/1471-2105-11-274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0024175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024734724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026706357", 
              "https://doi.org/10.1038/nmeth.2019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dneu.20866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028292019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0270(96)00080-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028366178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2008-00005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028947865", 
              "https://doi.org/10.1140/epjb/e2008-00005-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0029956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029354962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0270(89)90100-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030364251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0270(89)90100-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030364251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2007.03.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031237476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-011-9737-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031574513", 
              "https://doi.org/10.1007/s10916-011-9737-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4103/2153-3539.108540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032348510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apsusc.2013.02.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033512910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/3527600906.mcb.201100002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035809940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035817137", 
              "https://doi.org/10.1038/nmeth.2089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fphys.2013.00186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036379044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-4682-5-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039504104", 
              "https://doi.org/10.1186/1742-4682-5-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10278-004-1879-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039723677", 
              "https://doi.org/10.1007/s10278-004-1879-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10278-004-1879-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039723677", 
              "https://doi.org/10.1007/s10278-004-1879-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040153735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ar.b.20066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043607194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ar.b.20066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043607194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ico.0000000000000114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043736997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ico.0000000000000114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043736997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2014.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044517903", 
              "https://doi.org/10.1038/nprot.2014.024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fncel.2013.00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047193368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2009.12.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049388286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.preteyeres.2005.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049490962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051270900", 
              "https://doi.org/10.1186/1471-2105-12-230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0041148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051491685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jbo.18.7.076008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052657826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-1596-8-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052820219", 
              "https://doi.org/10.1186/1746-1596-8-92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-1596-8-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052820219", 
              "https://doi.org/10.1186/1746-1596-8-92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053585364", 
              "https://doi.org/10.1038/nmeth.2102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.4528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.4528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.13295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062230614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.20.003015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065199168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14440/jbm.2014.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067313372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/000112511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069095578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/000112517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069095583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076829589", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077042942", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/02841851.2010.491092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078181334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/02841851.2010.491092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078181334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078767548", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082387526", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "To explore questions asked in neuroscience, neuroscientists rely heavily on the tools available. One such toolset is ImageJ, open-source, free, biological digital image analysis software. Open-source software has matured alongside of fractal analysis in neuroscience, and today ImageJ is not a niche but a foundation relied on by a substantial number of neuroscientists for work in diverse fields including fractal analysis. This is largely owing to two features of open-source software leveraged in ImageJ and vital to vigorous neuroscience: customizability and collaboration. With those notions in mind, this chapter\u2019s aim is threefold: (1) it introduces ImageJ, (2) it outlines ways this software tool has influenced fractal analysis in neuroscience and shaped the questions researchers devote time to, and (3) it reviews a few examples of ways investigators have developed and used ImageJ for pattern extraction in fractal analysis. Throughout this chapter, the focus is on fostering a collaborative and creative mindset for translating knowledge of the fractal geometry of the brain into clinical reality.", 
        "editor": [
          {
            "familyName": "Di Ieva", 
            "givenName": "Antonio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4939-3995-4_32", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4939-3993-0", 
            "978-1-4939-3995-4"
          ], 
          "name": "The Fractal Geometry of the Brain", 
          "type": "Book"
        }, 
        "name": "ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research", 
        "pagination": "503-522", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4939-3995-4_32"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "97cc59a4c536bef36dd8b244fc116f1b818267615bc8fef1ce8421cf71e8cfe1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031864996"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4939-3995-4_32", 
          "https://app.dimensions.ai/details/publication/pub.1031864996"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000289.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4939-3995-4_32"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_32'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_32'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_32'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_32'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      23 PREDICATES      91 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4939-3995-4_32 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0ccf860615574feba9c2ca0bdc703a1c
    4 schema:citation sg:pub.10.1007/3-7643-7412-8_8
    5 sg:pub.10.1007/978-3-319-10404-1_5
    6 sg:pub.10.1007/s10278-004-1879-4
    7 sg:pub.10.1007/s10916-011-9737-7
    8 sg:pub.10.1007/s12021-011-9121-2
    9 sg:pub.10.1038/nmeth.2019
    10 sg:pub.10.1038/nmeth.2089
    11 sg:pub.10.1038/nmeth.2102
    12 sg:pub.10.1038/nmeth.3125
    13 sg:pub.10.1038/nprot.2008.51
    14 sg:pub.10.1038/nprot.2014.024
    15 sg:pub.10.1140/epjb/e2008-00005-5
    16 sg:pub.10.1186/1471-2105-11-274
    17 sg:pub.10.1186/1471-2105-12-230
    18 sg:pub.10.1186/1532-429x-15-36
    19 sg:pub.10.1186/1742-4682-5-12
    20 sg:pub.10.1186/1746-1596-8-92
    21 https://app.dimensions.ai/details/publication/pub.1076829589
    22 https://app.dimensions.ai/details/publication/pub.1077042942
    23 https://app.dimensions.ai/details/publication/pub.1078767548
    24 https://app.dimensions.ai/details/publication/pub.1082387526
    25 https://doi.org/10.1002/3527600906.mcb.201100002
    26 https://doi.org/10.1002/ar.b.20066
    27 https://doi.org/10.1002/cyto.a.20022
    28 https://doi.org/10.1002/cyto.a.20895
    29 https://doi.org/10.1002/cyto.a.22408
    30 https://doi.org/10.1002/dneu.20866
    31 https://doi.org/10.1016/0165-0270(89)90100-3
    32 https://doi.org/10.1016/j.apsusc.2013.02.135
    33 https://doi.org/10.1016/j.bone.2010.08.023
    34 https://doi.org/10.1016/j.cll.2012.07.006
    35 https://doi.org/10.1016/j.compbiomed.2009.12.003
    36 https://doi.org/10.1016/j.jneumeth.2007.08.029
    37 https://doi.org/10.1016/j.jneumeth.2009.12.014
    38 https://doi.org/10.1016/j.jneumeth.2010.09.007
    39 https://doi.org/10.1016/j.neuroimage.2007.03.057
    40 https://doi.org/10.1016/j.neuroimage.2013.05.089
    41 https://doi.org/10.1016/j.neuroimage.2013.06.072
    42 https://doi.org/10.1016/j.neuroscience.2009.04.062
    43 https://doi.org/10.1016/j.preteyeres.2005.07.001
    44 https://doi.org/10.1016/s0165-0270(96)00080-5
    45 https://doi.org/10.1017/s1431927614012811
    46 https://doi.org/10.1083/jcb.201004104
    47 https://doi.org/10.1093/bioinformatics/btr390
    48 https://doi.org/10.1097/ico.0000000000000114
    49 https://doi.org/10.1103/physreva.42.4528
    50 https://doi.org/10.1117/1.jbo.18.7.076008
    51 https://doi.org/10.1119/1.13295
    52 https://doi.org/10.1152/ajpgi.00485.2010
    53 https://doi.org/10.1364/oe.20.003015
    54 https://doi.org/10.1371/journal.pone.0019150
    55 https://doi.org/10.1371/journal.pone.0024175
    56 https://doi.org/10.1371/journal.pone.0029956
    57 https://doi.org/10.1371/journal.pone.0041148
    58 https://doi.org/10.14440/jbm.2014.36
    59 https://doi.org/10.1523/jneurosci.0186-10.2010
    60 https://doi.org/10.2144/000112511
    61 https://doi.org/10.2144/000112517
    62 https://doi.org/10.2147/opth.s1579
    63 https://doi.org/10.3109/02841851.2010.491092
    64 https://doi.org/10.3389/fbioe.2014.00034
    65 https://doi.org/10.3389/fncel.2013.00003
    66 https://doi.org/10.3389/fphys.2013.00186
    67 https://doi.org/10.4103/2153-3539.108540
    68 schema:datePublished 2016
    69 schema:datePublishedReg 2016-01-01
    70 schema:description To explore questions asked in neuroscience, neuroscientists rely heavily on the tools available. One such toolset is ImageJ, open-source, free, biological digital image analysis software. Open-source software has matured alongside of fractal analysis in neuroscience, and today ImageJ is not a niche but a foundation relied on by a substantial number of neuroscientists for work in diverse fields including fractal analysis. This is largely owing to two features of open-source software leveraged in ImageJ and vital to vigorous neuroscience: customizability and collaboration. With those notions in mind, this chapter’s aim is threefold: (1) it introduces ImageJ, (2) it outlines ways this software tool has influenced fractal analysis in neuroscience and shaped the questions researchers devote time to, and (3) it reviews a few examples of ways investigators have developed and used ImageJ for pattern extraction in fractal analysis. Throughout this chapter, the focus is on fostering a collaborative and creative mindset for translating knowledge of the fractal geometry of the brain into clinical reality.
    71 schema:editor N34eb8a1042b64d9e8b93c4a3f63f3f6e
    72 schema:genre chapter
    73 schema:inLanguage en
    74 schema:isAccessibleForFree false
    75 schema:isPartOf Nf8f5a5c6e3b840faac29753df645684a
    76 schema:name ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research
    77 schema:pagination 503-522
    78 schema:productId N54f814ab70e7422d81de08e268dbeb28
    79 N5a837624dc9d451c8994938be38a6258
    80 Ne9575b1a4a3147e392eb1ece8bc10ce8
    81 schema:publisher N414c7c88099a4fe3b35012e1d5feed2b
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031864996
    83 https://doi.org/10.1007/978-1-4939-3995-4_32
    84 schema:sdDatePublished 2019-04-15T20:11
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher Nd2795435c1a74856a0a4051a21e9d990
    87 schema:url http://link.springer.com/10.1007/978-1-4939-3995-4_32
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset chapters
    90 rdf:type schema:Chapter
    91 N0ccf860615574feba9c2ca0bdc703a1c rdf:first sg:person.01212725112.58
    92 rdf:rest N0fa01baacdbf480fab3a88eb53d0b839
    93 N0fa01baacdbf480fab3a88eb53d0b839 rdf:first sg:person.0734237124.86
    94 rdf:rest rdf:nil
    95 N34eb8a1042b64d9e8b93c4a3f63f3f6e rdf:first N8528bdb63f7346a7bbcdb71afd9a5174
    96 rdf:rest rdf:nil
    97 N414c7c88099a4fe3b35012e1d5feed2b schema:location New York, NY
    98 schema:name Springer New York
    99 rdf:type schema:Organisation
    100 N54f814ab70e7422d81de08e268dbeb28 schema:name dimensions_id
    101 schema:value pub.1031864996
    102 rdf:type schema:PropertyValue
    103 N5a837624dc9d451c8994938be38a6258 schema:name doi
    104 schema:value 10.1007/978-1-4939-3995-4_32
    105 rdf:type schema:PropertyValue
    106 N8528bdb63f7346a7bbcdb71afd9a5174 schema:familyName Di Ieva
    107 schema:givenName Antonio
    108 rdf:type schema:Person
    109 Nd2795435c1a74856a0a4051a21e9d990 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Ne9575b1a4a3147e392eb1ece8bc10ce8 schema:name readcube_id
    112 schema:value 97cc59a4c536bef36dd8b244fc116f1b818267615bc8fef1ce8421cf71e8cfe1
    113 rdf:type schema:PropertyValue
    114 Nf8f5a5c6e3b840faac29753df645684a schema:isbn 978-1-4939-3993-0
    115 978-1-4939-3995-4
    116 schema:name The Fractal Geometry of the Brain
    117 rdf:type schema:Book
    118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Information and Computing Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Artificial Intelligence and Image Processing
    123 rdf:type schema:DefinedTerm
    124 sg:person.01212725112.58 schema:affiliation https://www.grid.ac/institutes/grid.1037.5
    125 schema:familyName Karperien
    126 schema:givenName Audrey L.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212725112.58
    128 rdf:type schema:Person
    129 sg:person.0734237124.86 schema:affiliation https://www.grid.ac/institutes/grid.1037.5
    130 schema:familyName Jelinek
    131 schema:givenName Herbert F.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734237124.86
    133 rdf:type schema:Person
    134 sg:pub.10.1007/3-7643-7412-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019341972
    135 https://doi.org/10.1007/3-7643-7412-8_8
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-319-10404-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008054412
    138 https://doi.org/10.1007/978-3-319-10404-1_5
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10278-004-1879-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039723677
    141 https://doi.org/10.1007/s10278-004-1879-4
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10916-011-9737-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031574513
    144 https://doi.org/10.1007/s10916-011-9737-7
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s12021-011-9121-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003799593
    147 https://doi.org/10.1007/s12021-011-9121-2
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
    150 https://doi.org/10.1038/nmeth.2019
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
    153 https://doi.org/10.1038/nmeth.2089
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nmeth.2102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053585364
    156 https://doi.org/10.1038/nmeth.2102
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nmeth.3125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023026506
    159 https://doi.org/10.1038/nmeth.3125
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nprot.2008.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008714942
    162 https://doi.org/10.1038/nprot.2008.51
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nprot.2014.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044517903
    165 https://doi.org/10.1038/nprot.2014.024
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1140/epjb/e2008-00005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028947865
    168 https://doi.org/10.1140/epjb/e2008-00005-5
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1186/1471-2105-11-274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024694299
    171 https://doi.org/10.1186/1471-2105-11-274
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1186/1471-2105-12-230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051270900
    174 https://doi.org/10.1186/1471-2105-12-230
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1186/1532-429x-15-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019455247
    177 https://doi.org/10.1186/1532-429x-15-36
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1186/1742-4682-5-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039504104
    180 https://doi.org/10.1186/1742-4682-5-12
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1186/1746-1596-8-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052820219
    183 https://doi.org/10.1186/1746-1596-8-92
    184 rdf:type schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1076829589 schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1077042942 schema:CreativeWork
    187 https://app.dimensions.ai/details/publication/pub.1078767548 schema:CreativeWork
    188 https://app.dimensions.ai/details/publication/pub.1082387526 schema:CreativeWork
    189 https://doi.org/10.1002/3527600906.mcb.201100002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035809940
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1002/ar.b.20066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043607194
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1002/cyto.a.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002906095
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1002/cyto.a.20895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024364236
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/cyto.a.22408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220806
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/dneu.20866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028292019
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0165-0270(89)90100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030364251
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.apsusc.2013.02.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033512910
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.bone.2010.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020538185
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.cll.2012.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009478855
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.compbiomed.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003674846
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.jneumeth.2007.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017082296
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.jneumeth.2009.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049388286
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.jneumeth.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014547850
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.neuroimage.2007.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031237476
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.neuroimage.2013.05.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002634411
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.neuroimage.2013.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014936455
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.neuroscience.2009.04.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008868353
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.preteyeres.2005.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049490962
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/s0165-0270(96)00080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028366178
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1017/s1431927614012811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019040157
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1083/jcb.201004104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015106753
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/bioinformatics/btr390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024022524
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1097/ico.0000000000000114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043736997
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physreva.42.4528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482220
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1117/1.jbo.18.7.076008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052657826
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1119/1.13295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062230614
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1152/ajpgi.00485.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024548423
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1364/oe.20.003015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065199168
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1371/journal.pone.0019150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040153735
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pone.0024175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024734724
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pone.0029956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029354962
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pone.0041148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051491685
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.14440/jbm.2014.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067313372
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1523/jneurosci.0186-10.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006813738
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.2144/000112511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095578
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.2144/000112517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095583
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.2147/opth.s1579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011448136
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.3109/02841851.2010.491092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078181334
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.3389/fbioe.2014.00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014932302
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3389/fncel.2013.00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047193368
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.3389/fphys.2013.00186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379044
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.4103/2153-3539.108540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032348510
    274 rdf:type schema:CreativeWork
    275 https://www.grid.ac/institutes/grid.1037.5 schema:alternateName Charles Sturt University
    276 schema:name School of Community Health & Centre for Research in Complex Systems, Charles Sturt University
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...