Fractal Analysis of Electroencephalographic Time Series (EEG Signals) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Wlodzimierz Klonowski

ABSTRACT

Nonlinear methods are better suited for analysis of EEG signals than so-called linear methods like fast Fourier transform (FFT). In this chapter, we illustrate the use of the Higuchi’s fractal dimension method. We present several examples of the usefulness of this method in application to sleep-EEG analysis, revealing influence of electromagnetic fields, monitoring anesthesia, and assessing bright light therapy (BLT) and electroconvulsive therapy (ECT). We conclude that Higuchi’s fractal dimension method is very useful in the analysis of EEG signals. More... »

PAGES

413-429

References to SciGraph publications

Book

TITLE

The Fractal Geometry of the Brain

ISBN

978-1-4939-3993-0
978-1-4939-3995-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_25

DOI

http://dx.doi.org/10.1007/978-1-4939-3995-4_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005412575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klonowski", 
        "givenName": "Wlodzimierz", 
        "id": "sg:person.01130353707.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-3940(92)90221-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(92)90221-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1439-054x.2003.03199.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003094193", 
          "https://doi.org/10.1046/j.1439-054x.2003.03199.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(88)90081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003220323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(88)90081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003220323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02513313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005678121", 
          "https://doi.org/10.1007/bf02513313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02513313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005678121", 
          "https://doi.org/10.1007/bf02513313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/wsn.2010.21010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007934754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4694(97)00113-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012147087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8986.1992.tb01683.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017491631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018420366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01797193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020833220", 
          "https://doi.org/10.1007/bf01797193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89208-3_295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022925083", 
          "https://doi.org/10.1007/978-3-540-89208-3_295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-89208-3_295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022925083", 
          "https://doi.org/10.1007/978-3-540-89208-3_295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0779(02)00056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023254890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90039-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031908323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90039-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031908323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036572207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036572207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.74.1.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-36841-0_252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042595098", 
          "https://doi.org/10.1007/978-3-540-36841-0_252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00201482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047336102", 
          "https://doi.org/10.1007/bf00201482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00201482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047336102", 
          "https://doi.org/10.1007/bf00201482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01739226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047965315", 
          "https://doi.org/10.1007/bf01739226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01739226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047965315", 
          "https://doi.org/10.1007/bf01739226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220050394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048806738", 
          "https://doi.org/10.1007/s004220050394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1753-4631-3-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050413607", 
          "https://doi.org/10.1186/1753-4631-3-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37502-6_146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050695131", 
          "https://doi.org/10.1007/978-3-642-37502-6_146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1753-4631-1-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051764930", 
          "https://doi.org/10.1186/1753-4631-1-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858413513928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052438701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858413513928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052438701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1027/0269-8803/a000024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056343227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5709/acp-0148-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077950832", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812774217_0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096053706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Nonlinear methods are better suited for analysis of EEG signals than so-called linear methods like fast Fourier transform (FFT). In this chapter, we illustrate the use of the Higuchi\u2019s fractal dimension method. We present several examples of the usefulness of this method in application to sleep-EEG analysis, revealing influence of electromagnetic fields, monitoring anesthesia, and assessing bright light therapy (BLT) and electroconvulsive therapy (ECT). We conclude that Higuchi\u2019s fractal dimension method is very useful in the analysis of EEG signals.", 
    "editor": [
      {
        "familyName": "Di Ieva", 
        "givenName": "Antonio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3995-4_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3993-0", 
        "978-1-4939-3995-4"
      ], 
      "name": "The Fractal Geometry of the Brain", 
      "type": "Book"
    }, 
    "name": "Fractal Analysis of Electroencephalographic Time Series (EEG Signals)", 
    "pagination": "413-429", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3995-4_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19c9e1f828378b983e0c00137ffd49a532591c02deb0f2e3dec756f5ff71f153"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005412575"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3995-4_25", 
      "https://app.dimensions.ai/details/publication/pub.1005412575"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000283.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-3995-4_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3995-4_25'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3995-4_25 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nadf4eafd4ad64b9490b3b00cc40f9895
4 schema:citation sg:pub.10.1007/978-3-540-36841-0_252
5 sg:pub.10.1007/978-3-540-89208-3_295
6 sg:pub.10.1007/978-3-642-37502-6_146
7 sg:pub.10.1007/bf00201482
8 sg:pub.10.1007/bf01739226
9 sg:pub.10.1007/bf01797193
10 sg:pub.10.1007/bf02513313
11 sg:pub.10.1007/s004220050394
12 sg:pub.10.1046/j.1439-054x.2003.03199.x
13 sg:pub.10.1186/1753-4631-1-5
14 sg:pub.10.1186/1753-4631-3-2
15 https://app.dimensions.ai/details/publication/pub.1077950832
16 https://doi.org/10.1016/0167-2789(88)90081-4
17 https://doi.org/10.1016/0167-2789(90)90039-r
18 https://doi.org/10.1016/0304-3940(92)90221-r
19 https://doi.org/10.1016/j.clinph.2005.06.011
20 https://doi.org/10.1016/j.plrev.2013.08.002
21 https://doi.org/10.1016/s0013-4694(97)00113-2
22 https://doi.org/10.1016/s0960-0779(02)00056-5
23 https://doi.org/10.1027/0269-8803/a000024
24 https://doi.org/10.1111/j.1469-8986.1992.tb01683.x
25 https://doi.org/10.1136/jnnp.74.1.9
26 https://doi.org/10.1142/9789812774217_0031
27 https://doi.org/10.1177/1073858413513928
28 https://doi.org/10.4236/wsn.2010.21010
29 https://doi.org/10.5709/acp-0148-3
30 schema:datePublished 2016
31 schema:datePublishedReg 2016-01-01
32 schema:description Nonlinear methods are better suited for analysis of EEG signals than so-called linear methods like fast Fourier transform (FFT). In this chapter, we illustrate the use of the Higuchi’s fractal dimension method. We present several examples of the usefulness of this method in application to sleep-EEG analysis, revealing influence of electromagnetic fields, monitoring anesthesia, and assessing bright light therapy (BLT) and electroconvulsive therapy (ECT). We conclude that Higuchi’s fractal dimension method is very useful in the analysis of EEG signals.
33 schema:editor Ne28a17ef333f4f67a6b8d3d16a03f5e8
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N12ea7e8ca5f84bb7881d57811b63d313
38 schema:name Fractal Analysis of Electroencephalographic Time Series (EEG Signals)
39 schema:pagination 413-429
40 schema:productId N21fcd3e6ac95464688c3d2295289b4e0
41 N5adac7c7d9d14c51812332d8d9cb6cde
42 Nc4a99050e0e84404b6d9b0791ac28e5b
43 schema:publisher N4f707846c1974e3ebd96703a300ea746
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412575
45 https://doi.org/10.1007/978-1-4939-3995-4_25
46 schema:sdDatePublished 2019-04-15T23:56
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nbabb23d1580447bcb66cac13d3f00c87
49 schema:url http://link.springer.com/10.1007/978-1-4939-3995-4_25
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N12ea7e8ca5f84bb7881d57811b63d313 schema:isbn 978-1-4939-3993-0
54 978-1-4939-3995-4
55 schema:name The Fractal Geometry of the Brain
56 rdf:type schema:Book
57 N21fcd3e6ac95464688c3d2295289b4e0 schema:name dimensions_id
58 schema:value pub.1005412575
59 rdf:type schema:PropertyValue
60 N4f707846c1974e3ebd96703a300ea746 schema:location New York, NY
61 schema:name Springer New York
62 rdf:type schema:Organisation
63 N5adac7c7d9d14c51812332d8d9cb6cde schema:name readcube_id
64 schema:value 19c9e1f828378b983e0c00137ffd49a532591c02deb0f2e3dec756f5ff71f153
65 rdf:type schema:PropertyValue
66 N61419acfdd364bdc89c2365b563b9318 schema:familyName Di Ieva
67 schema:givenName Antonio
68 rdf:type schema:Person
69 Nadf4eafd4ad64b9490b3b00cc40f9895 rdf:first sg:person.01130353707.87
70 rdf:rest rdf:nil
71 Nbabb23d1580447bcb66cac13d3f00c87 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nc4a99050e0e84404b6d9b0791ac28e5b schema:name doi
74 schema:value 10.1007/978-1-4939-3995-4_25
75 rdf:type schema:PropertyValue
76 Ne28a17ef333f4f67a6b8d3d16a03f5e8 rdf:first N61419acfdd364bdc89c2365b563b9318
77 rdf:rest rdf:nil
78 Nfd08246403b642d4b0597c284d8786fa schema:name Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences
79 rdf:type schema:Organization
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
84 schema:name Other Physical Sciences
85 rdf:type schema:DefinedTerm
86 sg:person.01130353707.87 schema:affiliation Nfd08246403b642d4b0597c284d8786fa
87 schema:familyName Klonowski
88 schema:givenName Wlodzimierz
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-540-36841-0_252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042595098
92 https://doi.org/10.1007/978-3-540-36841-0_252
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-89208-3_295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022925083
95 https://doi.org/10.1007/978-3-540-89208-3_295
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-642-37502-6_146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050695131
98 https://doi.org/10.1007/978-3-642-37502-6_146
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00201482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047336102
101 https://doi.org/10.1007/bf00201482
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01739226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047965315
104 https://doi.org/10.1007/bf01739226
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01797193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020833220
107 https://doi.org/10.1007/bf01797193
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02513313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005678121
110 https://doi.org/10.1007/bf02513313
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s004220050394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048806738
113 https://doi.org/10.1007/s004220050394
114 rdf:type schema:CreativeWork
115 sg:pub.10.1046/j.1439-054x.2003.03199.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003094193
116 https://doi.org/10.1046/j.1439-054x.2003.03199.x
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/1753-4631-1-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051764930
119 https://doi.org/10.1186/1753-4631-1-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1186/1753-4631-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050413607
122 https://doi.org/10.1186/1753-4631-3-2
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1077950832 schema:CreativeWork
125 https://doi.org/10.1016/0167-2789(88)90081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003220323
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0167-2789(90)90039-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1031908323
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0304-3940(92)90221-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1002094962
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.clinph.2005.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036572207
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.plrev.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018420366
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0013-4694(97)00113-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147087
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0960-0779(02)00056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254890
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1027/0269-8803/a000024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056343227
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1469-8986.1992.tb01683.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017491631
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1136/jnnp.74.1.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042433695
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/9789812774217_0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096053706
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1177/1073858413513928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438701
148 rdf:type schema:CreativeWork
149 https://doi.org/10.4236/wsn.2010.21010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007934754
150 rdf:type schema:CreativeWork
151 https://doi.org/10.5709/acp-0148-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080959
152 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...