The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-11-04

AUTHORS

Marcus C. Chibucos , Deborah A. Siegele , James C. Hu , Michelle Giglio

ABSTRACT

The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made. More... »

PAGES

245-259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3743-1_18

DOI

http://dx.doi.org/10.1007/978-1-4939-3743-1_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012630201

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27812948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Curation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Ontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street, 21201, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street, 21201, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chibucos", 
        "givenName": "Marcus C.", 
        "id": "sg:person.01136407446.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136407446.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology, Texas A&M University, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Biology, Texas A&M University, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegele", 
        "givenName": "Deborah A.", 
        "id": "sg:person.0741637016.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741637016.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 77843, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 77843, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "James C.", 
        "id": "sg:person.016511130534.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016511130534.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giglio", 
        "givenName": "Michelle", 
        "id": "sg:person.0637630342.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637630342.86"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-11-04", 
    "datePublishedReg": "2016-11-04", 
    "description": "The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made.", 
    "editor": [
      {
        "familyName": "Dessimoz", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "familyName": "\u0160kunca", 
        "givenName": "Nives", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3743-1_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3741-7", 
        "978-1-4939-3743-1"
      ], 
      "name": "The Gene Ontology Handbook", 
      "type": "Book"
    }, 
    "keywords": [
      "annotation system", 
      "quality control pipeline", 
      "ontology", 
      "annotation", 
      "control pipeline", 
      "computational methods", 
      "GO annotations", 
      "users", 
      "resources", 
      "computer", 
      "researchers", 
      "pipeline", 
      "inference", 
      "data", 
      "system", 
      "Gene Ontology", 
      "assertion", 
      "particular assertion", 
      "today", 
      "technique", 
      "method", 
      "types", 
      "process", 
      "community resources", 
      "types of evidence", 
      "means", 
      "scientific studies", 
      "statements", 
      "humans", 
      "evidence types", 
      "authors", 
      "literature", 
      "structure", 
      "addition", 
      "eco", 
      "course", 
      "experimental techniques", 
      "study", 
      "evidence"
    ], 
    "name": "The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations", 
    "pagination": "245-259", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012630201"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3743-1_18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27812948"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3743-1_18", 
      "https://app.dimensions.ai/details/publication/pub.1012630201"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_280.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-3743-1_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3743-1_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3743-1_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3743-1_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3743-1_18'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      76 URIs      67 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3743-1_18 schema:about N0428042ccc514f0c8abd83964f04242f
2 N1b32358c611745f69d36e54d21d737c9
3 N425c40ddc9c54121900a5499344b5c49
4 N5d403a1db07d47cabf266f7a686c583e
5 N793e2c667c454e6383980684801be6c4
6 Nb6c76240560744179f799fa92a433961
7 Nea23962d6cc64dd28c502bd70cc31e3c
8 Nf3aa01d0b88543e1ae2e1fce17a2003b
9 Nf85d970371484a72acf9a4f2957b2203
10 anzsrc-for:03
11 anzsrc-for:0399
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author N0a774af758654aeebbddc159b8b32ede
15 schema:datePublished 2016-11-04
16 schema:datePublishedReg 2016-11-04
17 schema:description The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made.
18 schema:editor Nd9b60d198241422d92a688a5f15e066e
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N9f5cc8d543954ea7bd3fcee549f4f6b8
23 schema:keywords GO annotations
24 Gene Ontology
25 addition
26 annotation
27 annotation system
28 assertion
29 authors
30 community resources
31 computational methods
32 computer
33 control pipeline
34 course
35 data
36 eco
37 evidence
38 evidence types
39 experimental techniques
40 humans
41 inference
42 literature
43 means
44 method
45 ontology
46 particular assertion
47 pipeline
48 process
49 quality control pipeline
50 researchers
51 resources
52 scientific studies
53 statements
54 structure
55 study
56 system
57 technique
58 today
59 types
60 types of evidence
61 users
62 schema:name The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations
63 schema:pagination 245-259
64 schema:productId N2b968a778543486291e8167fd80c0eeb
65 N30df048a269f4fa686c3ccc59290268d
66 Na51a8d242f9a446f8513d1d5b33690cc
67 schema:publisher Nd4d352f236b64572b27891f6497fb73b
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012630201
69 https://doi.org/10.1007/978-1-4939-3743-1_18
70 schema:sdDatePublished 2022-06-01T22:31
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N51e2b6f17a754a3f94e5f9cef92052b0
73 schema:url https://doi.org/10.1007/978-1-4939-3743-1_18
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N0428042ccc514f0c8abd83964f04242f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Molecular Sequence Annotation
79 rdf:type schema:DefinedTerm
80 N0a774af758654aeebbddc159b8b32ede rdf:first sg:person.01136407446.04
81 rdf:rest N65e1288ecbec475e8af1b92d3e987bdd
82 N1b32358c611745f69d36e54d21d737c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Databases, Genetic
84 rdf:type schema:DefinedTerm
85 N2b968a778543486291e8167fd80c0eeb schema:name dimensions_id
86 schema:value pub.1012630201
87 rdf:type schema:PropertyValue
88 N30df048a269f4fa686c3ccc59290268d schema:name doi
89 schema:value 10.1007/978-1-4939-3743-1_18
90 rdf:type schema:PropertyValue
91 N40329ad15dd747c7b5ebd68ae2d4e484 rdf:first sg:person.0637630342.86
92 rdf:rest rdf:nil
93 N425c40ddc9c54121900a5499344b5c49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Computational Biology
95 rdf:type schema:DefinedTerm
96 N51e2b6f17a754a3f94e5f9cef92052b0 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N557a91c234c34e0da3cb4b06e3c01217 rdf:first sg:person.016511130534.43
99 rdf:rest N40329ad15dd747c7b5ebd68ae2d4e484
100 N5c1ead3c8222469c8d7fa2b55879c2b8 schema:familyName Dessimoz
101 schema:givenName Christophe
102 rdf:type schema:Person
103 N5d403a1db07d47cabf266f7a686c583e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Gene Ontology
105 rdf:type schema:DefinedTerm
106 N65e1288ecbec475e8af1b92d3e987bdd rdf:first sg:person.0741637016.36
107 rdf:rest N557a91c234c34e0da3cb4b06e3c01217
108 N793e2c667c454e6383980684801be6c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Internet
110 rdf:type schema:DefinedTerm
111 N9f5cc8d543954ea7bd3fcee549f4f6b8 schema:isbn 978-1-4939-3741-7
112 978-1-4939-3743-1
113 schema:name The Gene Ontology Handbook
114 rdf:type schema:Book
115 Na51a8d242f9a446f8513d1d5b33690cc schema:name pubmed_id
116 schema:value 27812948
117 rdf:type schema:PropertyValue
118 Nb6c76240560744179f799fa92a433961 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Animals
120 rdf:type schema:DefinedTerm
121 Nd4d352f236b64572b27891f6497fb73b schema:name Springer Nature
122 rdf:type schema:Organisation
123 Nd9b60d198241422d92a688a5f15e066e rdf:first N5c1ead3c8222469c8d7fa2b55879c2b8
124 rdf:rest Ne1dbc2366a42409e8db4f38f33f93623
125 Ne1dbc2366a42409e8db4f38f33f93623 rdf:first Necc8dd4d2b524442ad12603feb7cf9a4
126 rdf:rest rdf:nil
127 Nea23962d6cc64dd28c502bd70cc31e3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Software
129 rdf:type schema:DefinedTerm
130 Necc8dd4d2b524442ad12603feb7cf9a4 schema:familyName Škunca
131 schema:givenName Nives
132 rdf:type schema:Person
133 Nf3aa01d0b88543e1ae2e1fce17a2003b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Data Curation
135 rdf:type schema:DefinedTerm
136 Nf85d970371484a72acf9a4f2957b2203 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
140 schema:name Chemical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
143 schema:name Other Chemical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biochemistry and Cell Biology
150 rdf:type schema:DefinedTerm
151 sg:person.01136407446.04 schema:affiliation grid-institutes:grid.411024.2
152 schema:familyName Chibucos
153 schema:givenName Marcus C.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136407446.04
155 rdf:type schema:Person
156 sg:person.016511130534.43 schema:affiliation grid-institutes:grid.264756.4
157 schema:familyName Hu
158 schema:givenName James C.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016511130534.43
160 rdf:type schema:Person
161 sg:person.0637630342.86 schema:affiliation grid-institutes:grid.411024.2
162 schema:familyName Giglio
163 schema:givenName Michelle
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637630342.86
165 rdf:type schema:Person
166 sg:person.0741637016.36 schema:affiliation grid-institutes:grid.264756.4
167 schema:familyName Siegele
168 schema:givenName Deborah A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741637016.36
170 rdf:type schema:Person
171 grid-institutes:grid.264756.4 schema:alternateName Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 77843, College Station, TX, USA
172 Department of Biology, Texas A&M University, 77843, College Station, TX, USA
173 schema:name Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 77843, College Station, TX, USA
174 Department of Biology, Texas A&M University, 77843, College Station, TX, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.411024.2 schema:alternateName Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
177 Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street, 21201, Baltimore, MD, USA
178 schema:name Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
179 Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street, 21201, Baltimore, MD, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...