Quantum Computing/Quantum Information Processing in View of Electron Magnetic/Electron Paramagnetic Resonance Technique/Spectroscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Sushil K. Misra

ABSTRACT

This chapter discusses spin-based quantum computation and information processing using Electron Magnetic Resonance (also known as Electron Paramagnetic Resonance—EPR, Electron Spin Resonance—ESR; the term EPR will be used hereafter). The technique of pulsed EPR can be exploited to design quantum computers. New quantum information applications can be established by the development of EPR-based spin manipulation methodology on self-assembling, interacting nanoscale structures, e.g. fullerenes. The details and implications of these in the context of quantum computing are covered. As well, the various relevant jargons used in quantum computing are briefly described. More... »

PAGES

1-23

References to SciGraph publications

Book

TITLE

Electron Spin Resonance (ESR) Based Quantum Computing

ISBN

978-1-4939-3656-4
978-1-4939-3658-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3658-8_1

DOI

http://dx.doi.org/10.1007/978-1-4939-3658-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031047225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Physics, Concordia University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misra", 
        "givenName": "Sushil K.", 
        "id": "sg:person.011401670051.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011401670051.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrev.47.777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.47.777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013951720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013951720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/61/2/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026465273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b819556k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027093749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b819556k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027093749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1989.0099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030130365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033576786", 
          "https://doi.org/10.1038/35071024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033576786", 
          "https://doi.org/10.1038/35071024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043294810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.153001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051220678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.153001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051220678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1985.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053404391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100019137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053975960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100013554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053995998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5452.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.1994.365700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095740049"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "This chapter discusses spin-based quantum computation and information processing using Electron Magnetic Resonance (also known as Electron Paramagnetic Resonance\u2014EPR, Electron Spin Resonance\u2014ESR; the term EPR will be used hereafter). The technique of pulsed EPR can be exploited to design quantum computers. New quantum information applications can be established by the development of EPR-based spin manipulation methodology on self-assembling, interacting nanoscale structures, e.g. fullerenes. The details and implications of these in the context of quantum computing are covered. As well, the various relevant jargons used in quantum computing are briefly described.", 
    "editor": [
      {
        "familyName": "Takui", 
        "givenName": "Takeji", 
        "type": "Person"
      }, 
      {
        "familyName": "Berliner", 
        "givenName": "Lawrence", 
        "type": "Person"
      }, 
      {
        "familyName": "Hanson", 
        "givenName": "Graeme", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3658-8_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3656-4", 
        "978-1-4939-3658-8"
      ], 
      "name": "Electron Spin Resonance (ESR) Based Quantum Computing", 
      "type": "Book"
    }, 
    "name": "Quantum Computing/Quantum Information Processing in View of Electron Magnetic/Electron Paramagnetic Resonance Technique/Spectroscopy", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3658-8_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93e857092be7c91548e94ef5f73da98ac20a96ef9b6b451568dadb797cafe7e7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031047225"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3658-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1031047225"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-3658-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3658-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3658-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3658-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3658-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3658-8_1 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N4ed79991f1e44d83b1dd68928c18839b
4 schema:citation sg:pub.10.1038/35071024
5 https://doi.org/10.1017/s0305004100013554
6 https://doi.org/10.1017/s0305004100019137
7 https://doi.org/10.1039/b819556k
8 https://doi.org/10.1088/0034-4885/61/2/002
9 https://doi.org/10.1098/rspa.1985.0070
10 https://doi.org/10.1098/rspa.1989.0099
11 https://doi.org/10.1103/physrev.47.777
12 https://doi.org/10.1103/physreva.51.2738
13 https://doi.org/10.1103/physrevlett.69.2881
14 https://doi.org/10.1103/physrevlett.70.1895
15 https://doi.org/10.1103/physrevlett.79.4709
16 https://doi.org/10.1103/physrevlett.90.153001
17 https://doi.org/10.1103/revmodphys.68.733
18 https://doi.org/10.1109/sfcs.1994.365700
19 https://doi.org/10.1126/science.287.5452.463
20 schema:datePublished 2016
21 schema:datePublishedReg 2016-01-01
22 schema:description This chapter discusses spin-based quantum computation and information processing using Electron Magnetic Resonance (also known as Electron Paramagnetic Resonance—EPR, Electron Spin Resonance—ESR; the term EPR will be used hereafter). The technique of pulsed EPR can be exploited to design quantum computers. New quantum information applications can be established by the development of EPR-based spin manipulation methodology on self-assembling, interacting nanoscale structures, e.g. fullerenes. The details and implications of these in the context of quantum computing are covered. As well, the various relevant jargons used in quantum computing are briefly described.
23 schema:editor N0a427833c144456490a163397e22450c
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N1b3cc5c8edb84f189c994c8e80f527bf
28 schema:name Quantum Computing/Quantum Information Processing in View of Electron Magnetic/Electron Paramagnetic Resonance Technique/Spectroscopy
29 schema:pagination 1-23
30 schema:productId N17aefaf2226341aa8a8e94fd07bda019
31 N9cf9c9518c9e4aeb9db7565ad067b50b
32 Nf7477080b3a342829ef82637012fa19e
33 schema:publisher N825bffea9127450386b82e34d72ea96d
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047225
35 https://doi.org/10.1007/978-1-4939-3658-8_1
36 schema:sdDatePublished 2019-04-15T18:11
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N6872c53b286346dc83d81aad0ea03122
39 schema:url http://link.springer.com/10.1007/978-1-4939-3658-8_1
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N0a427833c144456490a163397e22450c rdf:first N40d0fff20237419b9a5e36f7a540876b
44 rdf:rest Neee0cbc3bd264df1a7835b5e6fccd0f1
45 N17aefaf2226341aa8a8e94fd07bda019 schema:name doi
46 schema:value 10.1007/978-1-4939-3658-8_1
47 rdf:type schema:PropertyValue
48 N1b3cc5c8edb84f189c994c8e80f527bf schema:isbn 978-1-4939-3656-4
49 978-1-4939-3658-8
50 schema:name Electron Spin Resonance (ESR) Based Quantum Computing
51 rdf:type schema:Book
52 N31c3aa5530f8438bbf370529dd3e8354 rdf:first Nd339acbab4464d5d94181887d6d02795
53 rdf:rest rdf:nil
54 N40d0fff20237419b9a5e36f7a540876b schema:familyName Takui
55 schema:givenName Takeji
56 rdf:type schema:Person
57 N4ed79991f1e44d83b1dd68928c18839b rdf:first sg:person.011401670051.38
58 rdf:rest rdf:nil
59 N6872c53b286346dc83d81aad0ea03122 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N825bffea9127450386b82e34d72ea96d schema:location New York, NY
62 schema:name Springer New York
63 rdf:type schema:Organisation
64 N9cf9c9518c9e4aeb9db7565ad067b50b schema:name readcube_id
65 schema:value 93e857092be7c91548e94ef5f73da98ac20a96ef9b6b451568dadb797cafe7e7
66 rdf:type schema:PropertyValue
67 Nac21dad0958344bbb342bef016b4d4b0 schema:name Department of Physics, Concordia University
68 rdf:type schema:Organization
69 Nb5c0dea8357a45a5a5229d3420fd84d9 schema:familyName Berliner
70 schema:givenName Lawrence
71 rdf:type schema:Person
72 Nd339acbab4464d5d94181887d6d02795 schema:familyName Hanson
73 schema:givenName Graeme
74 rdf:type schema:Person
75 Neee0cbc3bd264df1a7835b5e6fccd0f1 rdf:first Nb5c0dea8357a45a5a5229d3420fd84d9
76 rdf:rest N31c3aa5530f8438bbf370529dd3e8354
77 Nf7477080b3a342829ef82637012fa19e schema:name dimensions_id
78 schema:value pub.1031047225
79 rdf:type schema:PropertyValue
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
84 schema:name Condensed Matter Physics
85 rdf:type schema:DefinedTerm
86 sg:person.011401670051.38 schema:affiliation Nac21dad0958344bbb342bef016b4d4b0
87 schema:familyName Misra
88 schema:givenName Sushil K.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011401670051.38
90 rdf:type schema:Person
91 sg:pub.10.1038/35071024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033576786
92 https://doi.org/10.1038/35071024
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0305004100013554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053995998
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s0305004100019137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053975960
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1039/b819556k schema:sameAs https://app.dimensions.ai/details/publication/pub.1027093749
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0034-4885/61/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465273
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1098/rspa.1985.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053404391
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1098/rspa.1989.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130365
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrev.47.777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714864
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreva.51.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490086
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.69.2881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805641
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.79.4709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043294810
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.90.153001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051220678
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/revmodphys.68.733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839377
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1126/science.287.5452.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568079
123 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...