Spectral–Statistical Approach for Revealing Latent Regular Structures in DNA Sequence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Maria Chaley , Vladimir Kutyrkin

ABSTRACT

Methods of the spectral-statistical approach (2S-approach) for revealing latent periodicity in DNA sequences are described. The results of data analysis in the HeteroGenome database which collects the sequences similar to approximate tandem repeats in the genomes of model organisms are adduced. In consequence of further developing of the spectral-statistical approach, the techniques for recognizing latent profile periodicity are considered. These techniques are basing on extension of the notion of approximate tandem repeat. Examples of correlation of latent profile periodicity revealed in the CDSs with structural-functional properties in the proteins are given. More... »

PAGES

315-40

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3572-7_16

DOI

http://dx.doi.org/10.1007/978-1-4939-3572-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028555709

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27115640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Periodicity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tandem Repeat Sequences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Mathematical Problems of Biology, Russian Academy of Sciences"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaley", 
        "givenName": "Maria", 
        "id": "sg:person.01340665320.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340665320.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computational Mathematics and Mathematical Physics, Moscow State Technical University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kutyrkin", 
        "givenName": "Vladimir", 
        "id": "sg:person.01303174670.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303174670.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1745-6150-6-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002197970", 
          "https://doi.org/10.1186/1745-6150-6-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2009/924601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003887508", 
          "https://doi.org/10.1155/2009/924601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsr023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006045671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fbioe.2015.00031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006992834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2007.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009158998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009280233", 
          "https://doi.org/10.1186/1471-2105-9-466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010707975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004609", 
          "https://doi.org/10.1038/nrg1348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012004609", 
          "https://doi.org/10.1038/nrg1348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12298-011-0098-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017505620", 
          "https://doi.org/10.1007/s12298-011-0098-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017669524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00011-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021073460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btk032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022495316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022841090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-s4-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023209409", 
          "https://doi.org/10.1186/1471-2164-12-s4-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbl003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033287676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.2.573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035372973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035869545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2008.10531241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039086644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1416703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039344017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039630331", 
          "https://doi.org/10.1186/1471-2105-11-550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039630331", 
          "https://doi.org/10.1186/1471-2105-11-550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041721699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2015.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042150028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0096392510040012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042825733", 
          "https://doi.org/10.3103/s0096392510040012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0096392510040012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042825733", 
          "https://doi.org/10.3103/s0096392510040012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bau040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043488929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044557507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl1013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047193569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047415656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1009212816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17537/2013.8.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068353292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17537/2014.9.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068353324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077259371", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077287098", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Methods of the spectral-statistical approach (2S-approach) for revealing latent periodicity in DNA sequences are described. The results of data analysis in the HeteroGenome database which collects the sequences similar to approximate tandem repeats in the genomes of model organisms are adduced. In consequence of further developing of the spectral-statistical approach, the techniques for recognizing latent profile periodicity are considered. These techniques are basing on extension of the notion of approximate tandem repeat. Examples of correlation of latent profile periodicity revealed in the CDSs with structural-functional properties in the proteins are given.", 
    "editor": [
      {
        "familyName": "Carugo", 
        "givenName": "Oliviero", 
        "type": "Person"
      }, 
      {
        "familyName": "Eisenhaber", 
        "givenName": "Frank", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3572-7_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3570-3", 
        "978-1-4939-3572-7"
      ], 
      "name": "Data Mining Techniques for the Life Sciences", 
      "type": "Book"
    }, 
    "name": "Spectral\u2013Statistical Approach for Revealing Latent Regular Structures in DNA Sequence", 
    "pagination": "315-40", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3572-7_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8807d3ee8e46da4dad0df096cc1c91dcae175ad0a26dc851cf385c2e67d43155"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028555709"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27115640"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3572-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1028555709"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-3572-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3572-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3572-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3572-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3572-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      23 PREDICATES      74 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3572-7_16 schema:about N042799d7173f4c98b87125e0ce3784ab
2 N1e6d9fdb1efa4f068d2f86d8782b69ee
3 N28eec418f0474ba6bda4619a0e3001f9
4 N37bb6d87bd94433aaa754bcc4a074b78
5 N5b3016099f574ab9885190b0ecf31adb
6 N7f189406ef2344e6ae512e5ce8835d7b
7 N8e93593c72aa490d98ab9b09e9e63255
8 Nb0327dc2ac534d528b8dd1788861fe8e
9 Nb21038be34874f8a86e82ddaca1426b5
10 Ndf7fab7c8a654f61aaa4e2d0b8acffd6
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author N33305b9054a94033bcf95b4434ffeba5
14 schema:citation sg:pub.10.1007/s12298-011-0098-y
15 sg:pub.10.1038/35057062
16 sg:pub.10.1038/nrg1348
17 sg:pub.10.1155/2009/924601
18 sg:pub.10.1186/1471-2105-11-550
19 sg:pub.10.1186/1471-2105-9-466
20 sg:pub.10.1186/1471-2164-12-s4-s4
21 sg:pub.10.1186/1745-6150-6-21
22 sg:pub.10.3103/s0096392510040012
23 https://app.dimensions.ai/details/publication/pub.1077259371
24 https://app.dimensions.ai/details/publication/pub.1077287098
25 https://doi.org/10.1016/j.jtbi.2015.11.014
26 https://doi.org/10.1016/j.mbs.2007.10.008
27 https://doi.org/10.1016/s0375-9601(03)00641-8
28 https://doi.org/10.1080/07391102.2008.10531241
29 https://doi.org/10.1093/bib/bbl003
30 https://doi.org/10.1093/bioinformatics/18.1.196
31 https://doi.org/10.1093/bioinformatics/bth103
32 https://doi.org/10.1093/bioinformatics/btk032
33 https://doi.org/10.1093/bioinformatics/btl309
34 https://doi.org/10.1093/database/bau040
35 https://doi.org/10.1093/dnares/dsr023
36 https://doi.org/10.1093/nar/27.2.573
37 https://doi.org/10.1093/nar/gkl1013
38 https://doi.org/10.1093/nar/gkr988
39 https://doi.org/10.1093/nar/gks721
40 https://doi.org/10.1093/nar/gkt1223
41 https://doi.org/10.1093/nar/gku1216
42 https://doi.org/10.1093/nar/gku642
43 https://doi.org/10.1101/gr.1416703
44 https://doi.org/10.1126/science.1108872
45 https://doi.org/10.1128/mmbr.00011-08
46 https://doi.org/10.1214/ss/1009212816
47 https://doi.org/10.17537/2013.8.480
48 https://doi.org/10.17537/2014.9.33
49 https://doi.org/10.3389/fbioe.2015.00031
50 schema:datePublished 2016
51 schema:datePublishedReg 2016-01-01
52 schema:description Methods of the spectral-statistical approach (2S-approach) for revealing latent periodicity in DNA sequences are described. The results of data analysis in the HeteroGenome database which collects the sequences similar to approximate tandem repeats in the genomes of model organisms are adduced. In consequence of further developing of the spectral-statistical approach, the techniques for recognizing latent profile periodicity are considered. These techniques are basing on extension of the notion of approximate tandem repeat. Examples of correlation of latent profile periodicity revealed in the CDSs with structural-functional properties in the proteins are given.
53 schema:editor Na169efc7096e4addbf0c96db7b4596fd
54 schema:genre chapter
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N65986638d15846348e14e19e7d62d663
58 schema:name Spectral–Statistical Approach for Revealing Latent Regular Structures in DNA Sequence
59 schema:pagination 315-40
60 schema:productId N37d555cf32a14ab8bcd8d73abfd47fdf
61 N8f74392c01834fd98fdb58a719918bed
62 N91f1823e7b944bb88d570d2bb198c632
63 Nfa69128035b248f38def4c300c8c1921
64 schema:publisher Nd3cb611769244d9bb673121ea873c19e
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028555709
66 https://doi.org/10.1007/978-1-4939-3572-7_16
67 schema:sdDatePublished 2019-04-15T16:17
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N3ea4b62ae68444679f255ca706787c53
70 schema:url http://link.springer.com/10.1007/978-1-4939-3572-7_16
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N042799d7173f4c98b87125e0ce3784ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Tandem Repeat Sequences
76 rdf:type schema:DefinedTerm
77 N1859defdf63d40a1bc13b8553ac66a33 schema:name Department of Computational Mathematics and Mathematical Physics, Moscow State Technical University
78 rdf:type schema:Organization
79 N1e6d9fdb1efa4f068d2f86d8782b69ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name DNA
81 rdf:type schema:DefinedTerm
82 N28eec418f0474ba6bda4619a0e3001f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Models, Genetic
84 rdf:type schema:DefinedTerm
85 N33305b9054a94033bcf95b4434ffeba5 rdf:first sg:person.01340665320.14
86 rdf:rest N5d65b342411f48279bec4b22e89f778f
87 N37bb6d87bd94433aaa754bcc4a074b78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Periodicity
89 rdf:type schema:DefinedTerm
90 N37d555cf32a14ab8bcd8d73abfd47fdf schema:name pubmed_id
91 schema:value 27115640
92 rdf:type schema:PropertyValue
93 N3ea4b62ae68444679f255ca706787c53 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N5b3016099f574ab9885190b0ecf31adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Nucleic Acid Conformation
97 rdf:type schema:DefinedTerm
98 N5d65b342411f48279bec4b22e89f778f rdf:first sg:person.01303174670.40
99 rdf:rest rdf:nil
100 N65986638d15846348e14e19e7d62d663 schema:isbn 978-1-4939-3570-3
101 978-1-4939-3572-7
102 schema:name Data Mining Techniques for the Life Sciences
103 rdf:type schema:Book
104 N6cd04a04694945e9ae8117e8ce8cee4e schema:familyName Carugo
105 schema:givenName Oliviero
106 rdf:type schema:Person
107 N7c0dd1dfb7e54425883957f42d314ebb schema:familyName Eisenhaber
108 schema:givenName Frank
109 rdf:type schema:Person
110 N7f189406ef2344e6ae512e5ce8835d7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Databases, Genetic
112 rdf:type schema:DefinedTerm
113 N8e93593c72aa490d98ab9b09e9e63255 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 N8f74392c01834fd98fdb58a719918bed schema:name readcube_id
117 schema:value 8807d3ee8e46da4dad0df096cc1c91dcae175ad0a26dc851cf385c2e67d43155
118 rdf:type schema:PropertyValue
119 N91f1823e7b944bb88d570d2bb198c632 schema:name doi
120 schema:value 10.1007/978-1-4939-3572-7_16
121 rdf:type schema:PropertyValue
122 Na169efc7096e4addbf0c96db7b4596fd rdf:first N6cd04a04694945e9ae8117e8ce8cee4e
123 rdf:rest Ncf4e18fc32e74eb898daf791f280bbcb
124 Nb0327dc2ac534d528b8dd1788861fe8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Computational Biology
126 rdf:type schema:DefinedTerm
127 Nb21038be34874f8a86e82ddaca1426b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Sequence Analysis, DNA
129 rdf:type schema:DefinedTerm
130 Ncf4e18fc32e74eb898daf791f280bbcb rdf:first N7c0dd1dfb7e54425883957f42d314ebb
131 rdf:rest rdf:nil
132 Nd3cb611769244d9bb673121ea873c19e schema:location New York, NY
133 schema:name Springer New York
134 rdf:type schema:Organisation
135 Ndf7fab7c8a654f61aaa4e2d0b8acffd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Models, Statistical
137 rdf:type schema:DefinedTerm
138 Ne16000221ae449a7b264c91431a75c2d schema:name Institute of Mathematical Problems of Biology, Russian Academy of Sciences
139 rdf:type schema:Organization
140 Nfa69128035b248f38def4c300c8c1921 schema:name dimensions_id
141 schema:value pub.1028555709
142 rdf:type schema:PropertyValue
143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
144 schema:name Mathematical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
147 schema:name Statistics
148 rdf:type schema:DefinedTerm
149 sg:person.01303174670.40 schema:affiliation N1859defdf63d40a1bc13b8553ac66a33
150 schema:familyName Kutyrkin
151 schema:givenName Vladimir
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303174670.40
153 rdf:type schema:Person
154 sg:person.01340665320.14 schema:affiliation Ne16000221ae449a7b264c91431a75c2d
155 schema:familyName Chaley
156 schema:givenName Maria
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340665320.14
158 rdf:type schema:Person
159 sg:pub.10.1007/s12298-011-0098-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017505620
160 https://doi.org/10.1007/s12298-011-0098-y
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
163 https://doi.org/10.1038/35057062
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nrg1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012004609
166 https://doi.org/10.1038/nrg1348
167 rdf:type schema:CreativeWork
168 sg:pub.10.1155/2009/924601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003887508
169 https://doi.org/10.1155/2009/924601
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-11-550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039630331
172 https://doi.org/10.1186/1471-2105-11-550
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1471-2105-9-466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009280233
175 https://doi.org/10.1186/1471-2105-9-466
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2164-12-s4-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023209409
178 https://doi.org/10.1186/1471-2164-12-s4-s4
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/1745-6150-6-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002197970
181 https://doi.org/10.1186/1745-6150-6-21
182 rdf:type schema:CreativeWork
183 sg:pub.10.3103/s0096392510040012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042825733
184 https://doi.org/10.3103/s0096392510040012
185 rdf:type schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1077259371 schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1077287098 schema:CreativeWork
188 https://doi.org/10.1016/j.jtbi.2015.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042150028
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.mbs.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009158998
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0375-9601(03)00641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343633
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/07391102.2008.10531241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086644
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bib/bbl003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033287676
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/18.1.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044557507
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bth103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035869545
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btk032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022495316
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btl309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038860765
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/database/bau040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043488929
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/dnares/dsr023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006045671
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/27.2.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035372973
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkl1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047193569
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/nar/gkr988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017669524
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gks721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047415656
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/gkt1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010707975
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gku1216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721699
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/nar/gku642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022841090
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1101/gr.1416703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039344017
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1108872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451528
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1128/mmbr.00011-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073460
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1214/ss/1009212816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409411
231 rdf:type schema:CreativeWork
232 https://doi.org/10.17537/2013.8.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068353292
233 rdf:type schema:CreativeWork
234 https://doi.org/10.17537/2014.9.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068353324
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3389/fbioe.2015.00031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006992834
237 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...