Analysis of Ancient DNA in Microbial Ecology View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Olivier Gorgé , E. Andrew Bennett , Diyendo Massilani , Julien Daligault , Melanie Pruvost , Eva-Maria Geigl , Thierry Grange

ABSTRACT

The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. More... »

PAGES

289-315

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17

DOI

http://dx.doi.org/10.1007/978-1-4939-3369-3_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015956041

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26791510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fossils", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Microbial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paleontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorg\u00e9", 
        "givenName": "Olivier", 
        "id": "sg:person.01346234076.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346234076.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "E. Andrew", 
        "id": "sg:person.01232704507.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232704507.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massilani", 
        "givenName": "Diyendo", 
        "id": "sg:person.0660177316.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177316.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daligault", 
        "givenName": "Julien", 
        "id": "sg:person.01034635231.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034635231.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pruvost", 
        "givenName": "Melanie", 
        "id": "sg:person.01116456107.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116456107.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geigl", 
        "givenName": "Eva-Maria", 
        "id": "sg:person.0671642207.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671642207.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grange", 
        "givenName": "Thierry", 
        "id": "sg:person.01150035132.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150035132.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0076-6879(06)10019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000900856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004534918", 
          "https://doi.org/10.1038/nature13591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004737256", 
          "https://doi.org/10.1038/ng.2906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011287846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011287846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1224344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01526-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014766903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1238286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015651351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472358", 
          "https://doi.org/10.1038/nature12886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503718102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017795199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503718102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017795199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2003.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018463188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2002.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019136842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhevol.2008.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020693440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023917098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034246196", 
          "https://doi.org/10.1038/nprot.2013.038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134740", 
          "https://doi.org/10.1038/35071177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134740", 
          "https://doi.org/10.1038/35071177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.17.4.840-862.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035468900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0034131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036440628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041817897", 
          "https://doi.org/10.1038/nature12323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042284160", 
          "https://doi.org/10.1038/nature10549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610257104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044790371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704665104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1475-4754.t01-1-00066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049059671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(01)00220-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050645819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053529462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05384st03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097058"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. ", 
    "editor": [
      {
        "familyName": "Martin", 
        "givenName": "Francis", 
        "type": "Person"
      }, 
      {
        "familyName": "Uroz", 
        "givenName": "Stephane", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3369-3_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3367-9", 
        "978-1-4939-3369-3"
      ], 
      "name": "Microbial Environmental Genomics (MEG)", 
      "type": "Book"
    }, 
    "name": "Analysis of Ancient DNA in Microbial Ecology", 
    "pagination": "289-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3369-3_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c07314de1fb23363489f9117d1f21a835f60c3c4dc4d3f860dbbd57d764497d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015956041"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26791510"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3369-3_17", 
      "https://app.dimensions.ai/details/publication/pub.1015956041"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000253.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-3369-3_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      23 PREDICATES      67 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3369-3_17 schema:about N24497e880ddc49459d05d3934cdab52c
2 N26ece441f8d64a87b76ac2758b6ed29a
3 N58ee985f40e84587b2e91075c87ca31f
4 N6ccc3b167b414805a1988607e604715e
5 N96e4a652f3c746bd865f54aa18fb0f99
6 Nb8651df9367a4331a3ef5557af15c99f
7 Ne3bc8088ab0443448036c66148fbcfd9
8 Ne487cff2e35042a4b570bfcf74721534
9 Nf2cdb8bf5e3041c9a6ae266d44e05500
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N8eaf25a9f1614df79888500fe655aa62
13 schema:citation sg:pub.10.1038/35071177
14 sg:pub.10.1038/nature09710
15 sg:pub.10.1038/nature10549
16 sg:pub.10.1038/nature12323
17 sg:pub.10.1038/nature12886
18 sg:pub.10.1038/nature13591
19 sg:pub.10.1038/ng.2906
20 sg:pub.10.1038/nprot.2013.038
21 https://doi.org/10.1016/j.jas.2002.05.002
22 https://doi.org/10.1016/j.jhevol.2008.03.005
23 https://doi.org/10.1016/j.mimet.2003.08.009
24 https://doi.org/10.1016/s0076-6879(06)10019-1
25 https://doi.org/10.1016/s0167-7012(01)00220-2
26 https://doi.org/10.1073/pnas.0503718102
27 https://doi.org/10.1073/pnas.0610257104
28 https://doi.org/10.1073/pnas.0704665104
29 https://doi.org/10.1093/bioinformatics/btp324
30 https://doi.org/10.1093/bioinformatics/btt193
31 https://doi.org/10.1093/nar/gks808
32 https://doi.org/10.1093/nar/gku699
33 https://doi.org/10.1111/1475-4754.t01-1-00066
34 https://doi.org/10.1126/science.1113485
35 https://doi.org/10.1126/science.1224344
36 https://doi.org/10.1126/science.1238286
37 https://doi.org/10.1128/aem.01526-10
38 https://doi.org/10.1128/cmr.17.4.840-862.2004
39 https://doi.org/10.1371/journal.pone.0013042
40 https://doi.org/10.1371/journal.pone.0034131
41 https://doi.org/10.2144/000114176
42 https://doi.org/10.2144/05384st03
43 schema:datePublished 2016
44 schema:datePublishedReg 2016-01-01
45 schema:description The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota.
46 schema:editor N5c013d783567441f8afa3b4424905027
47 schema:genre chapter
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N09c1837597b3498f8a4af6324ec85556
51 schema:name Analysis of Ancient DNA in Microbial Ecology
52 schema:pagination 289-315
53 schema:productId N05d04fef18b54adfbe240c8808a6829c
54 N13cffeef3b5d4ac3a62e5932dafe11c4
55 N6265430f1d51496e933103cee51da5ed
56 N6d5a580aa75144b8b20aebc36c5e19a2
57 schema:publisher N79580dd65e8d4085bd1ee0b1d9301751
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956041
59 https://doi.org/10.1007/978-1-4939-3369-3_17
60 schema:sdDatePublished 2019-04-15T20:04
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd331cee979b047cfac969bd2d589a8fe
63 schema:url http://link.springer.com/10.1007/978-1-4939-3369-3_17
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N04ff58835b1c4b54a9790cc010395d2d schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
68 rdf:type schema:Organization
69 N05d04fef18b54adfbe240c8808a6829c schema:name doi
70 schema:value 10.1007/978-1-4939-3369-3_17
71 rdf:type schema:PropertyValue
72 N09c1837597b3498f8a4af6324ec85556 schema:isbn 978-1-4939-3367-9
73 978-1-4939-3369-3
74 schema:name Microbial Environmental Genomics (MEG)
75 rdf:type schema:Book
76 N0d5052504da14a9a857c6b43e19b1ee3 schema:familyName Martin
77 schema:givenName Francis
78 rdf:type schema:Person
79 N13cffeef3b5d4ac3a62e5932dafe11c4 schema:name readcube_id
80 schema:value 4c07314de1fb23363489f9117d1f21a835f60c3c4dc4d3f860dbbd57d764497d
81 rdf:type schema:PropertyValue
82 N1793dd40fc854f968e15d65932f05d47 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
83 rdf:type schema:Organization
84 N18bf295899fe4a56a04bb50fc97e0683 rdf:first sg:person.01232704507.48
85 rdf:rest Nc21ce8ed8b2b40b5878fdb1e32aef26b
86 N24497e880ddc49459d05d3934cdab52c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Fossils
88 rdf:type schema:DefinedTerm
89 N26ece441f8d64a87b76ac2758b6ed29a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Animals
91 rdf:type schema:DefinedTerm
92 N3f076d24c3024f9d824791f1e288a0d3 rdf:first sg:person.01034635231.09
93 rdf:rest N50cfeda509f14e6fa75fed7260bbc3b1
94 N3ffbe1eeddea4db09f362f44ef309526 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
95 rdf:type schema:Organization
96 N453b705a619c4edb904a8b673c3a815f rdf:first N90bfc91c2b0c41c5a6866542b552c788
97 rdf:rest rdf:nil
98 N50cfeda509f14e6fa75fed7260bbc3b1 rdf:first sg:person.01116456107.37
99 rdf:rest N7f7c0486243c489d9370907b9719acb3
100 N56a81f63b2fd48b78961824f75345b1a schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
101 rdf:type schema:Organization
102 N58ee985f40e84587b2e91075c87ca31f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name DNA, Bacterial
104 rdf:type schema:DefinedTerm
105 N5c013d783567441f8afa3b4424905027 rdf:first N0d5052504da14a9a857c6b43e19b1ee3
106 rdf:rest N453b705a619c4edb904a8b673c3a815f
107 N6265430f1d51496e933103cee51da5ed schema:name pubmed_id
108 schema:value 26791510
109 rdf:type schema:PropertyValue
110 N6ccc3b167b414805a1988607e604715e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Genomics
112 rdf:type schema:DefinedTerm
113 N6d5a580aa75144b8b20aebc36c5e19a2 schema:name dimensions_id
114 schema:value pub.1015956041
115 rdf:type schema:PropertyValue
116 N79580dd65e8d4085bd1ee0b1d9301751 schema:location New York, NY
117 schema:name Springer New York
118 rdf:type schema:Organisation
119 N7f7c0486243c489d9370907b9719acb3 rdf:first sg:person.0671642207.19
120 rdf:rest Nd77860c9bf184ad383b519d336acae64
121 N833b38ca027543fdb1a03602d832c906 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
122 rdf:type schema:Organization
123 N8d25501af6cc4bbf9e72825a74d9fa88 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
124 rdf:type schema:Organization
125 N8eaf25a9f1614df79888500fe655aa62 rdf:first sg:person.01346234076.06
126 rdf:rest N18bf295899fe4a56a04bb50fc97e0683
127 N90bfc91c2b0c41c5a6866542b552c788 schema:familyName Uroz
128 schema:givenName Stephane
129 rdf:type schema:Person
130 N96e4a652f3c746bd865f54aa18fb0f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 Na9127529e9d140d98d72b619cee66335 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
134 rdf:type schema:Organization
135 Nb8651df9367a4331a3ef5557af15c99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Soil Microbiology
137 rdf:type schema:DefinedTerm
138 Nc21ce8ed8b2b40b5878fdb1e32aef26b rdf:first sg:person.0660177316.78
139 rdf:rest N3f076d24c3024f9d824791f1e288a0d3
140 Nd331cee979b047cfac969bd2d589a8fe schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Nd77860c9bf184ad383b519d336acae64 rdf:first sg:person.01150035132.08
143 rdf:rest rdf:nil
144 Ne3bc8088ab0443448036c66148fbcfd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genome, Microbial
146 rdf:type schema:DefinedTerm
147 Ne487cff2e35042a4b570bfcf74721534 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Paleontology
149 rdf:type schema:DefinedTerm
150 Nf2cdb8bf5e3041c9a6ae266d44e05500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name High-Throughput Nucleotide Sequencing
152 rdf:type schema:DefinedTerm
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
157 schema:name Genetics
158 rdf:type schema:DefinedTerm
159 sg:person.01034635231.09 schema:affiliation Na9127529e9d140d98d72b619cee66335
160 schema:familyName Daligault
161 schema:givenName Julien
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034635231.09
163 rdf:type schema:Person
164 sg:person.01116456107.37 schema:affiliation N8d25501af6cc4bbf9e72825a74d9fa88
165 schema:familyName Pruvost
166 schema:givenName Melanie
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116456107.37
168 rdf:type schema:Person
169 sg:person.01150035132.08 schema:affiliation N1793dd40fc854f968e15d65932f05d47
170 schema:familyName Grange
171 schema:givenName Thierry
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150035132.08
173 rdf:type schema:Person
174 sg:person.01232704507.48 schema:affiliation N3ffbe1eeddea4db09f362f44ef309526
175 schema:familyName Bennett
176 schema:givenName E. Andrew
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232704507.48
178 rdf:type schema:Person
179 sg:person.01346234076.06 schema:affiliation N833b38ca027543fdb1a03602d832c906
180 schema:familyName Gorgé
181 schema:givenName Olivier
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346234076.06
183 rdf:type schema:Person
184 sg:person.0660177316.78 schema:affiliation N04ff58835b1c4b54a9790cc010395d2d
185 schema:familyName Massilani
186 schema:givenName Diyendo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177316.78
188 rdf:type schema:Person
189 sg:person.0671642207.19 schema:affiliation N56a81f63b2fd48b78961824f75345b1a
190 schema:familyName Geigl
191 schema:givenName Eva-Maria
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671642207.19
193 rdf:type schema:Person
194 sg:pub.10.1038/35071177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035134740
195 https://doi.org/10.1038/35071177
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature09710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205294
198 https://doi.org/10.1038/nature09710
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature10549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042284160
201 https://doi.org/10.1038/nature10549
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature12323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041817897
204 https://doi.org/10.1038/nature12323
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature12886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472358
207 https://doi.org/10.1038/nature12886
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature13591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004534918
210 https://doi.org/10.1038/nature13591
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ng.2906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004737256
213 https://doi.org/10.1038/ng.2906
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nprot.2013.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034246196
216 https://doi.org/10.1038/nprot.2013.038
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jas.2002.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019136842
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jhevol.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020693440
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.mimet.2003.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018463188
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0076-6879(06)10019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900856
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0167-7012(01)00220-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050645819
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.0503718102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017795199
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.0610257104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044790371
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0704665104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401726
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btt193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011287846
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gks808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023917098
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gku699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017404686
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/1475-4754.t01-1-00066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049059671
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1113485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452286
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1224344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028677
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1238286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015651351
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.01526-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014766903
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/cmr.17.4.840-862.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035468900
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0013042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053529462
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0034131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036440628
257 rdf:type schema:CreativeWork
258 https://doi.org/10.2144/000114176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096662
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2144/05384st03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097058
261 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...