Analysis of Ancient DNA in Microbial Ecology View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Olivier Gorgé , E. Andrew Bennett , Diyendo Massilani , Julien Daligault , Melanie Pruvost , Eva-Maria Geigl , Thierry Grange

ABSTRACT

The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. More... »

PAGES

289-315

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17

DOI

http://dx.doi.org/10.1007/978-1-4939-3369-3_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015956041

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26791510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fossils", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Microbial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paleontology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorg\u00e9", 
        "givenName": "Olivier", 
        "id": "sg:person.01346234076.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346234076.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "E. Andrew", 
        "id": "sg:person.01232704507.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232704507.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massilani", 
        "givenName": "Diyendo", 
        "id": "sg:person.0660177316.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177316.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daligault", 
        "givenName": "Julien", 
        "id": "sg:person.01034635231.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034635231.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pruvost", 
        "givenName": "Melanie", 
        "id": "sg:person.01116456107.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116456107.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geigl", 
        "givenName": "Eva-Maria", 
        "id": "sg:person.0671642207.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671642207.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut Jacques Monod, UMR 7592, CNRS, Universit\u00e9 Paris Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grange", 
        "givenName": "Thierry", 
        "id": "sg:person.01150035132.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150035132.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0076-6879(06)10019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000900856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004534918", 
          "https://doi.org/10.1038/nature13591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004737256", 
          "https://doi.org/10.1038/ng.2906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011287846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011287846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1224344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01526-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014766903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1238286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015651351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472358", 
          "https://doi.org/10.1038/nature12886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503718102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017795199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503718102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017795199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2003.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018463188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jas.2002.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019136842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhevol.2008.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020693440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023917098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034246196", 
          "https://doi.org/10.1038/nprot.2013.038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134740", 
          "https://doi.org/10.1038/35071177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134740", 
          "https://doi.org/10.1038/35071177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.17.4.840-862.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035468900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0034131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036440628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041817897", 
          "https://doi.org/10.1038/nature12323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042284160", 
          "https://doi.org/10.1038/nature10549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610257104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044790371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704665104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1475-4754.t01-1-00066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049059671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(01)00220-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050645819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053529462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05384st03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097058"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. ", 
    "editor": [
      {
        "familyName": "Martin", 
        "givenName": "Francis", 
        "type": "Person"
      }, 
      {
        "familyName": "Uroz", 
        "givenName": "Stephane", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-3369-3_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-3367-9", 
        "978-1-4939-3369-3"
      ], 
      "name": "Microbial Environmental Genomics (MEG)", 
      "type": "Book"
    }, 
    "name": "Analysis of Ancient DNA in Microbial Ecology", 
    "pagination": "289-315", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-3369-3_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c07314de1fb23363489f9117d1f21a835f60c3c4dc4d3f860dbbd57d764497d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015956041"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26791510"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-3369-3_17", 
      "https://app.dimensions.ai/details/publication/pub.1015956041"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000253.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-3369-3_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-3369-3_17'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      23 PREDICATES      67 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-3369-3_17 schema:about N104d72dcab764b9eafdd5a1117d3e122
2 N2a6b6683a3d64db9a5540adfb47ca326
3 N5272761dbed1425d9043681426e94cd5
4 N827b735aa8214fba8eba3467f8562536
5 N8baddf0760ad4ed4b97a8b5134c40546
6 N9994734569e04cfd97939d4cbcea173d
7 Nb6f7e2ae824b4f88ad09ccd51c38d077
8 Nd9e49efba2194badb962b0c149897fda
9 Nf3497d1c21534717be15822ede63ca05
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N118e3cf05e46494281b12e3f324420f9
13 schema:citation sg:pub.10.1038/35071177
14 sg:pub.10.1038/nature09710
15 sg:pub.10.1038/nature10549
16 sg:pub.10.1038/nature12323
17 sg:pub.10.1038/nature12886
18 sg:pub.10.1038/nature13591
19 sg:pub.10.1038/ng.2906
20 sg:pub.10.1038/nprot.2013.038
21 https://doi.org/10.1016/j.jas.2002.05.002
22 https://doi.org/10.1016/j.jhevol.2008.03.005
23 https://doi.org/10.1016/j.mimet.2003.08.009
24 https://doi.org/10.1016/s0076-6879(06)10019-1
25 https://doi.org/10.1016/s0167-7012(01)00220-2
26 https://doi.org/10.1073/pnas.0503718102
27 https://doi.org/10.1073/pnas.0610257104
28 https://doi.org/10.1073/pnas.0704665104
29 https://doi.org/10.1093/bioinformatics/btp324
30 https://doi.org/10.1093/bioinformatics/btt193
31 https://doi.org/10.1093/nar/gks808
32 https://doi.org/10.1093/nar/gku699
33 https://doi.org/10.1111/1475-4754.t01-1-00066
34 https://doi.org/10.1126/science.1113485
35 https://doi.org/10.1126/science.1224344
36 https://doi.org/10.1126/science.1238286
37 https://doi.org/10.1128/aem.01526-10
38 https://doi.org/10.1128/cmr.17.4.840-862.2004
39 https://doi.org/10.1371/journal.pone.0013042
40 https://doi.org/10.1371/journal.pone.0034131
41 https://doi.org/10.2144/000114176
42 https://doi.org/10.2144/05384st03
43 schema:datePublished 2016
44 schema:datePublishedReg 2016-01-01
45 schema:description The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota.
46 schema:editor Na927ac166dac4a24968b8710ed3c263a
47 schema:genre chapter
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf Nfd3eacf82c6f45c691fbc39ebcd82164
51 schema:name Analysis of Ancient DNA in Microbial Ecology
52 schema:pagination 289-315
53 schema:productId N651a65095f8e4ca6864b60cb723b7005
54 Nb1061581e737478da7e2a33f838b8181
55 Nc74f75676a3543228a926a96027dee87
56 Ne636837101ce4c219714f81c39645beb
57 schema:publisher N782639fb546144c5b379555dae74e96b
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956041
59 https://doi.org/10.1007/978-1-4939-3369-3_17
60 schema:sdDatePublished 2019-04-15T20:04
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Neaf4771817d04f5f8d45fe5df811f274
63 schema:url http://link.springer.com/10.1007/978-1-4939-3369-3_17
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N00987259deb949759e5f46d5cf2a908c rdf:first sg:person.01034635231.09
68 rdf:rest N9fdfde613a37441cb3490e6d52694c29
69 N104d72dcab764b9eafdd5a1117d3e122 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Genome, Microbial
71 rdf:type schema:DefinedTerm
72 N118e3cf05e46494281b12e3f324420f9 rdf:first sg:person.01346234076.06
73 rdf:rest Nd85dc51cdeac4b23aed77fde98161653
74 N11e82b3cb2eb4cf186638596a516eeca rdf:first sg:person.01150035132.08
75 rdf:rest rdf:nil
76 N2a6b6683a3d64db9a5540adfb47ca326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Genomics
78 rdf:type schema:DefinedTerm
79 N2abd82b70f7946aeb4f8fb9331cda582 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
80 rdf:type schema:Organization
81 N2b7adbda7c244218bace7784212affb2 rdf:first sg:person.0660177316.78
82 rdf:rest N00987259deb949759e5f46d5cf2a908c
83 N2efdf68f1e6c4b2cb9a0c0a959d6babc schema:familyName Uroz
84 schema:givenName Stephane
85 rdf:type schema:Person
86 N5272761dbed1425d9043681426e94cd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name High-Throughput Nucleotide Sequencing
88 rdf:type schema:DefinedTerm
89 N54149460aeaf446688e31562663ef341 schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
90 rdf:type schema:Organization
91 N5c3107facd7e4d94bc1eb237d315af1f schema:familyName Martin
92 schema:givenName Francis
93 rdf:type schema:Person
94 N651a65095f8e4ca6864b60cb723b7005 schema:name readcube_id
95 schema:value 4c07314de1fb23363489f9117d1f21a835f60c3c4dc4d3f860dbbd57d764497d
96 rdf:type schema:PropertyValue
97 N70b1c138b40e466482d6df5ccacd672b schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
98 rdf:type schema:Organization
99 N782639fb546144c5b379555dae74e96b schema:location New York, NY
100 schema:name Springer New York
101 rdf:type schema:Organisation
102 N7e0db0f6676b47a4899fa33944c66bcd schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
103 rdf:type schema:Organization
104 N827b735aa8214fba8eba3467f8562536 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N8baddf0760ad4ed4b97a8b5134c40546 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Fossils
109 rdf:type schema:DefinedTerm
110 N9994734569e04cfd97939d4cbcea173d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Animals
112 rdf:type schema:DefinedTerm
113 N9f9c44ebc4cf4bbd94911c9365f9172a rdf:first N2efdf68f1e6c4b2cb9a0c0a959d6babc
114 rdf:rest rdf:nil
115 N9fdfde613a37441cb3490e6d52694c29 rdf:first sg:person.01116456107.37
116 rdf:rest Nbf00cb4287444c2da5baabd7d86002da
117 Na139994b51d443489827b59568c8c47c schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
118 rdf:type schema:Organization
119 Na73554951a5e457a8bfd60d3ee0b11fa schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
120 rdf:type schema:Organization
121 Na927ac166dac4a24968b8710ed3c263a rdf:first N5c3107facd7e4d94bc1eb237d315af1f
122 rdf:rest N9f9c44ebc4cf4bbd94911c9365f9172a
123 Nb1061581e737478da7e2a33f838b8181 schema:name pubmed_id
124 schema:value 26791510
125 rdf:type schema:PropertyValue
126 Nb6f7e2ae824b4f88ad09ccd51c38d077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Paleontology
128 rdf:type schema:DefinedTerm
129 Nbf00cb4287444c2da5baabd7d86002da rdf:first sg:person.0671642207.19
130 rdf:rest N11e82b3cb2eb4cf186638596a516eeca
131 Nc74f75676a3543228a926a96027dee87 schema:name dimensions_id
132 schema:value pub.1015956041
133 rdf:type schema:PropertyValue
134 Nd33992eaef1d4c859087a0fe3c1b3b6e schema:name Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot
135 rdf:type schema:Organization
136 Nd85dc51cdeac4b23aed77fde98161653 rdf:first sg:person.01232704507.48
137 rdf:rest N2b7adbda7c244218bace7784212affb2
138 Nd9e49efba2194badb962b0c149897fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name DNA, Bacterial
140 rdf:type schema:DefinedTerm
141 Ne636837101ce4c219714f81c39645beb schema:name doi
142 schema:value 10.1007/978-1-4939-3369-3_17
143 rdf:type schema:PropertyValue
144 Neaf4771817d04f5f8d45fe5df811f274 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 Nf3497d1c21534717be15822ede63ca05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Soil Microbiology
148 rdf:type schema:DefinedTerm
149 Nfd3eacf82c6f45c691fbc39ebcd82164 schema:isbn 978-1-4939-3367-9
150 978-1-4939-3369-3
151 schema:name Microbial Environmental Genomics (MEG)
152 rdf:type schema:Book
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
157 schema:name Genetics
158 rdf:type schema:DefinedTerm
159 sg:person.01034635231.09 schema:affiliation N2abd82b70f7946aeb4f8fb9331cda582
160 schema:familyName Daligault
161 schema:givenName Julien
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034635231.09
163 rdf:type schema:Person
164 sg:person.01116456107.37 schema:affiliation N54149460aeaf446688e31562663ef341
165 schema:familyName Pruvost
166 schema:givenName Melanie
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116456107.37
168 rdf:type schema:Person
169 sg:person.01150035132.08 schema:affiliation N7e0db0f6676b47a4899fa33944c66bcd
170 schema:familyName Grange
171 schema:givenName Thierry
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150035132.08
173 rdf:type schema:Person
174 sg:person.01232704507.48 schema:affiliation Na139994b51d443489827b59568c8c47c
175 schema:familyName Bennett
176 schema:givenName E. Andrew
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232704507.48
178 rdf:type schema:Person
179 sg:person.01346234076.06 schema:affiliation Nd33992eaef1d4c859087a0fe3c1b3b6e
180 schema:familyName Gorgé
181 schema:givenName Olivier
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346234076.06
183 rdf:type schema:Person
184 sg:person.0660177316.78 schema:affiliation Na73554951a5e457a8bfd60d3ee0b11fa
185 schema:familyName Massilani
186 schema:givenName Diyendo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177316.78
188 rdf:type schema:Person
189 sg:person.0671642207.19 schema:affiliation N70b1c138b40e466482d6df5ccacd672b
190 schema:familyName Geigl
191 schema:givenName Eva-Maria
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671642207.19
193 rdf:type schema:Person
194 sg:pub.10.1038/35071177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035134740
195 https://doi.org/10.1038/35071177
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature09710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205294
198 https://doi.org/10.1038/nature09710
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature10549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042284160
201 https://doi.org/10.1038/nature10549
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature12323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041817897
204 https://doi.org/10.1038/nature12323
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature12886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472358
207 https://doi.org/10.1038/nature12886
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature13591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004534918
210 https://doi.org/10.1038/nature13591
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ng.2906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004737256
213 https://doi.org/10.1038/ng.2906
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nprot.2013.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034246196
216 https://doi.org/10.1038/nprot.2013.038
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jas.2002.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019136842
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jhevol.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020693440
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.mimet.2003.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018463188
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0076-6879(06)10019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900856
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0167-7012(01)00220-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050645819
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.0503718102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017795199
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.0610257104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044790371
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.0704665104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401726
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btt193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011287846
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gks808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023917098
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gku699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017404686
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/1475-4754.t01-1-00066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049059671
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1113485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452286
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1224344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028677
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1238286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015651351
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.01526-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014766903
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/cmr.17.4.840-862.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035468900
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0013042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053529462
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0034131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036440628
257 rdf:type schema:CreativeWork
258 https://doi.org/10.2144/000114176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096662
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2144/05384st03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097058
261 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...