Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Thomas Gurry , Charles K. Fisher , Molly Schmidt , Collin M. Stultz

ABSTRACT

Intrinsically disordered proteins (IDPs) are notoriously difficult to study experimentally because they rapidly interconvert between many dissimilar conformations during their biological lifetime, and therefore cannot be described by a single structure. The importance of studying these systems, however, is underscored by the fact that they form toxic aggregates that play a role in the pathogenesis of many disorders. The first step towards a comprehensive understanding of the aggregation mechanism of these proteins involves a description of their thermally accessible states under physiologic conditions. The resulting conformational ensembles correspond to coarse-grained descriptions of their energy landscapes, where the number of structures in the ensemble is related to the resolution in which one views the free energy surface. Here, we provide step-by-step instructions on how to use experimental data to construct a conformational ensemble for an IDP using a Variational Bayesian Weighting (VBW) algorithm. We further discuss how to leverage this Bayesian approach to identify statistically significant ensemble-wide observations that can form the basis of further experimental studies. More... »

PAGES

269-80

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-2978-8_17

DOI

http://dx.doi.org/10.1007/978-1-4939-2978-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019883314

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26453218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amyloidogenic Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intrinsically Disordered Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Aggregation, Pathological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Computational and Systems Biology Initiative, Massachusetts Institute of Technology", 
            "Research Laboratory of Electronics, Massachusetts Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurry", 
        "givenName": "Thomas", 
        "id": "sg:person.0773322652.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773322652.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Physics Department, Boston University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisher", 
        "givenName": "Charles K.", 
        "id": "sg:person.01107551252.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107551252.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Research Laboratory of Electronics, Massachusetts Institute of Technology", 
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Molly", 
        "id": "sg:person.01053172411.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053172411.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Computational and Systems Biology Initiative, Massachusetts Institute of Technology", 
            "Research Laboratory of Electronics, Massachusetts Institute of Technology", 
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology", 
            "The Institute for Medical Engineering and Science, Massachusetts Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stultz", 
        "givenName": "Collin M.", 
        "id": "sg:person.01225235071.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225235071.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10858-011-9478-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001623557", 
          "https://doi.org/10.1007/s10858-011-9478-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2011.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007425040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja105832g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016268347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja105832g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016268347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biophys.37.032807.125924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021563682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023812930288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021724924", 
          "https://doi.org/10.1023/a:1023812930288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2010.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025112978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025566031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814366496_0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033574889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2009.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037599726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040180503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040193213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040193213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2013.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040425655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2013.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040425655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506078102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050008382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0000908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055698634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja101645g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja101645g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2011.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398464"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Intrinsically disordered proteins (IDPs) are notoriously difficult to study experimentally because they rapidly interconvert between many dissimilar conformations during their biological lifetime, and therefore cannot be described by a single structure. The importance of studying these systems, however, is underscored by the fact that they form toxic aggregates that play a role in the pathogenesis of many disorders. The first step towards a comprehensive understanding of the aggregation mechanism of these proteins involves a description of their thermally accessible states under physiologic conditions. The resulting conformational ensembles correspond to coarse-grained descriptions of their energy landscapes, where the number of structures in the ensemble is related to the resolution in which one views the free energy surface. Here, we provide step-by-step instructions on how to use experimental data to construct a conformational ensemble for an IDP using a Variational Bayesian Weighting (VBW) algorithm. We further discuss how to leverage this Bayesian approach to identify statistically significant ensemble-wide observations that can form the basis of further experimental studies. ", 
    "editor": [
      {
        "familyName": "Eliezer", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-2978-8_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-2977-1", 
        "978-1-4939-2978-8"
      ], 
      "name": "Protein Amyloid Aggregation", 
      "type": "Book"
    }, 
    "name": "Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics", 
    "pagination": "269-80", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-2978-8_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ebbe62babbb009d3126b247a40a8d722f1a8828556ea13d078deb7203767a81"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019883314"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26453218"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-2978-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1019883314"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-2978-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-2978-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-2978-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-2978-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-2978-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      52 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-2978-8_17 schema:about N157b5878e87842f09b817db03c9fdeaa
2 N2ebd0677c6b64b6dbea763dd851494e3
3 N45e828afc0df436d86d47d850d317712
4 N751a43b202e548628e129d33b63d6363
5 N7f4a15335b5c4bc3b0bfbdd927d05789
6 N834d49b549ed43d587778543e2264546
7 N9502efa830574518a6ff5cb46e62aa34
8 Nd1d4af85ccb644afb937cfd2e27fed83
9 anzsrc-for:03
10 anzsrc-for:0306
11 schema:author N14410b9fb4824b9e8617a950cac5384a
12 schema:citation sg:pub.10.1007/s10858-011-9478-4
13 sg:pub.10.1023/a:1023812930288
14 https://doi.org/10.1002/jcc.21287
15 https://doi.org/10.1016/j.bpj.2009.05.003
16 https://doi.org/10.1016/j.bpj.2013.02.023
17 https://doi.org/10.1016/j.sbi.2011.04.001
18 https://doi.org/10.1016/j.str.2010.01.020
19 https://doi.org/10.1021/ja0000908
20 https://doi.org/10.1021/ja101645g
21 https://doi.org/10.1021/ja105832g
22 https://doi.org/10.1073/pnas.0506078102
23 https://doi.org/10.1093/bioinformatics/bts172
24 https://doi.org/10.1093/nar/gkm957
25 https://doi.org/10.1109/mcse.2011.37
26 https://doi.org/10.1142/9789814366496_0009
27 https://doi.org/10.1146/annurev.biophys.37.032807.125924
28 schema:datePublished 2016
29 schema:datePublishedReg 2016-01-01
30 schema:description Intrinsically disordered proteins (IDPs) are notoriously difficult to study experimentally because they rapidly interconvert between many dissimilar conformations during their biological lifetime, and therefore cannot be described by a single structure. The importance of studying these systems, however, is underscored by the fact that they form toxic aggregates that play a role in the pathogenesis of many disorders. The first step towards a comprehensive understanding of the aggregation mechanism of these proteins involves a description of their thermally accessible states under physiologic conditions. The resulting conformational ensembles correspond to coarse-grained descriptions of their energy landscapes, where the number of structures in the ensemble is related to the resolution in which one views the free energy surface. Here, we provide step-by-step instructions on how to use experimental data to construct a conformational ensemble for an IDP using a Variational Bayesian Weighting (VBW) algorithm. We further discuss how to leverage this Bayesian approach to identify statistically significant ensemble-wide observations that can form the basis of further experimental studies.
31 schema:editor Ncb0f7e0505584ee8a20ba0fbe0aede00
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N563023a8808845ada8fb705cd164a1df
36 schema:name Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics
37 schema:pagination 269-80
38 schema:productId N0dd07423b57b4175a6ce29f7cd1d5554
39 N9f8b0ac4c18c4ce9a4ddddb88202f064
40 Nc80028a2b50e472d8c887026d89935c1
41 Nf0e3d46c18b349dc8e3c75685f2344cb
42 schema:publisher Ncbce1e98984a4d98af6f23d6bcedb617
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019883314
44 https://doi.org/10.1007/978-1-4939-2978-8_17
45 schema:sdDatePublished 2019-04-15T11:34
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nef4028fb8f5a45918a3a98691836042e
48 schema:url http://link.springer.com/10.1007/978-1-4939-2978-8_17
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0dd07423b57b4175a6ce29f7cd1d5554 schema:name doi
53 schema:value 10.1007/978-1-4939-2978-8_17
54 rdf:type schema:PropertyValue
55 N14410b9fb4824b9e8617a950cac5384a rdf:first sg:person.0773322652.36
56 rdf:rest Ncd1fd512dd6e4fa7824451ab64741402
57 N157b5878e87842f09b817db03c9fdeaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Protein Aggregation, Pathological
59 rdf:type schema:DefinedTerm
60 N2ebd0677c6b64b6dbea763dd851494e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Molecular Biology
62 rdf:type schema:DefinedTerm
63 N45e828afc0df436d86d47d850d317712 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Amyloidogenic Proteins
65 rdf:type schema:DefinedTerm
66 N563023a8808845ada8fb705cd164a1df schema:isbn 978-1-4939-2977-1
67 978-1-4939-2978-8
68 schema:name Protein Amyloid Aggregation
69 rdf:type schema:Book
70 N5b347738a2774665877b8ad9cf068c0d schema:familyName Eliezer
71 schema:givenName David
72 rdf:type schema:Person
73 N5bf24b29f40d4a7081632baa57d66cf5 rdf:first sg:person.01053172411.03
74 rdf:rest N9e6b120ee39c45e5be3a9db12aacef60
75 N751a43b202e548628e129d33b63d6363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Protein Conformation
77 rdf:type schema:DefinedTerm
78 N7f4a15335b5c4bc3b0bfbdd927d05789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Models, Molecular
80 rdf:type schema:DefinedTerm
81 N834d49b549ed43d587778543e2264546 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N9502efa830574518a6ff5cb46e62aa34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Bayes Theorem
86 rdf:type schema:DefinedTerm
87 N9d3663ff45a14278b8e5181dacb5235a schema:name Computational and Systems Biology Initiative, Massachusetts Institute of Technology
88 Research Laboratory of Electronics, Massachusetts Institute of Technology
89 rdf:type schema:Organization
90 N9e6b120ee39c45e5be3a9db12aacef60 rdf:first sg:person.01225235071.40
91 rdf:rest rdf:nil
92 N9f8b0ac4c18c4ce9a4ddddb88202f064 schema:name pubmed_id
93 schema:value 26453218
94 rdf:type schema:PropertyValue
95 Nc80028a2b50e472d8c887026d89935c1 schema:name dimensions_id
96 schema:value pub.1019883314
97 rdf:type schema:PropertyValue
98 Ncb0f7e0505584ee8a20ba0fbe0aede00 rdf:first N5b347738a2774665877b8ad9cf068c0d
99 rdf:rest rdf:nil
100 Ncbce1e98984a4d98af6f23d6bcedb617 schema:location New York, NY
101 schema:name Springer New York
102 rdf:type schema:Organisation
103 Ncd1fd512dd6e4fa7824451ab64741402 rdf:first sg:person.01107551252.25
104 rdf:rest N5bf24b29f40d4a7081632baa57d66cf5
105 Nd1d4af85ccb644afb937cfd2e27fed83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Intrinsically Disordered Proteins
107 rdf:type schema:DefinedTerm
108 Nef4028fb8f5a45918a3a98691836042e schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nf0e3d46c18b349dc8e3c75685f2344cb schema:name readcube_id
111 schema:value 5ebbe62babbb009d3126b247a40a8d722f1a8828556ea13d078deb7203767a81
112 rdf:type schema:PropertyValue
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:person.01053172411.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
120 schema:familyName Schmidt
121 schema:givenName Molly
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053172411.03
123 rdf:type schema:Person
124 sg:person.01107551252.25 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
125 schema:familyName Fisher
126 schema:givenName Charles K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107551252.25
128 rdf:type schema:Person
129 sg:person.01225235071.40 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
130 schema:familyName Stultz
131 schema:givenName Collin M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225235071.40
133 rdf:type schema:Person
134 sg:person.0773322652.36 schema:affiliation N9d3663ff45a14278b8e5181dacb5235a
135 schema:familyName Gurry
136 schema:givenName Thomas
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773322652.36
138 rdf:type schema:Person
139 sg:pub.10.1007/s10858-011-9478-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001623557
140 https://doi.org/10.1007/s10858-011-9478-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/a:1023812930288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021724924
143 https://doi.org/10.1023/a:1023812930288
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jcc.21287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040193213
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.bpj.2009.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037599726
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.bpj.2013.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040425655
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.sbi.2011.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007425040
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.str.2010.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025112978
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ja0000908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055698634
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja101645g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055847076
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/ja105832g schema:sameAs https://app.dimensions.ai/details/publication/pub.1016268347
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.0506078102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050008382
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/bts172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040180503
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkm957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025566031
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/mcse.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398464
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1142/9789814366496_0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033574889
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1146/annurev.biophys.37.032807.125924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021563682
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
174 schema:name Computational and Systems Biology Initiative, Massachusetts Institute of Technology
175 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
176 Research Laboratory of Electronics, Massachusetts Institute of Technology
177 The Institute for Medical Engineering and Science, Massachusetts Institute of Technology
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
180 schema:name Physics Department, Boston University
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...