Selection of Reliable Reference Genes for RT-qPCR Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Jan Hellemans , Jo Vandesompele

ABSTRACT

Reference genes have become the method of choice for normalization of qPCR data. It has been demonstrated in many studies that reference gene validation is essential to ensure accurate and reliable results. This chapter describes how a pilot study can be set up to identify the best set of reference genes to be used for normalization of qPCR data. The data from such a pilot study should be analyzed with dedicated algorithms such as geNorm to rank genes according to their stability--a measure for how well they are suited for normalization. geNorm also provides insights into the optimal number of reference genes and the overall quality of the selected set of reference genes. Importantly, these results are always in function of the sample type being studied. Guidelines are provided on the interpretation of the results from geNorm pilot studies as well as for the continued monitoring of reference gene quality in subsequent studies. For screening studies including a large, unbiased set of genes (e.g., complete miRNome) an alternative normalization method can be used: global mean normalization. This chapter also describes how the data from such studies can be used to identify reference genes for subsequent validation studies on smaller sets of selected genes. More... »

PAGES

19-26

Book

TITLE

Quantitative Real-Time PCR

ISBN

978-1-4939-0732-8
978-1-4939-0733-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-0733-5_3

DOI

http://dx.doi.org/10.1007/978-1-4939-0733-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006137359

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24740218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reverse Transcriptase Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biogazelle, Technologiepark 3, 9052\u00a0Zwijnaarde, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellemans", 
        "givenName": "Jan", 
        "id": "sg:person.01337400337.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biogazelle, Technologiepark 3, 9052\u00a0Zwijnaarde, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vandesompele", 
        "givenName": "Jo", 
        "id": "sg:person.0615166774.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000034762", 
          "https://doi.org/10.1038/ng1453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000034762", 
          "https://doi.org/10.1038/ng1453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-427-8_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034502204", 
          "https://doi.org/10.1007/978-1-61779-427-8_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gene.6364190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037345611", 
          "https://doi.org/10.1038/sj.gene.6364190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gene.6364190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037345611", 
          "https://doi.org/10.1038/sj.gene.6364190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(09)70154-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039741127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-6-r64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044394180", 
          "https://doi.org/10.1186/gb-2009-10-6-r64"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Reference genes have become the method of choice for normalization of qPCR data. It has been demonstrated in many studies that reference gene validation is essential to ensure accurate and reliable results. This chapter describes how a pilot study can be set up to identify the best set of reference genes to be used for normalization of qPCR data. The data from such a pilot study should be analyzed with dedicated algorithms such as geNorm to rank genes according to their stability--a measure for how well they are suited for normalization. geNorm also provides insights into the optimal number of reference genes and the overall quality of the selected set of reference genes. Importantly, these results are always in function of the sample type being studied. Guidelines are provided on the interpretation of the results from geNorm pilot studies as well as for the continued monitoring of reference gene quality in subsequent studies. For screening studies including a large, unbiased set of genes (e.g., complete miRNome) an alternative normalization method can be used: global mean normalization. This chapter also describes how the data from such studies can be used to identify reference genes for subsequent validation studies on smaller sets of selected genes.", 
    "editor": [
      {
        "familyName": "Biassoni", 
        "givenName": "Roberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Raso", 
        "givenName": "Alessandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-0733-5_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-0732-8", 
        "978-1-4939-0733-5"
      ], 
      "name": "Quantitative Real-Time PCR", 
      "type": "Book"
    }, 
    "name": "Selection of Reliable Reference Genes for RT-qPCR Analysis", 
    "pagination": "19-26", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-0733-5_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d3c4485f1a7783197269ef6db6d6585e1ccf2c059ba59a81d3d47cfc5a543d7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006137359"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24740218"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-0733-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1006137359"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4939-0733-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0733-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0733-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0733-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0733-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      37 URIs      24 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-0733-5_3 schema:about N2b146b417d9f48b690ec01e050679f2b
2 Ne20b3a54f417449e8ef9ae070c6871e9
3 Nf57f2e93723c492f84fb2c1b70d34580
4 anzsrc-for:06
5 anzsrc-for:0604
6 schema:author Na7b038df64dc43669313a25a092fd73f
7 schema:citation sg:pub.10.1007/978-1-61779-427-8_18
8 sg:pub.10.1038/ng1453
9 sg:pub.10.1038/sj.gene.6364190
10 sg:pub.10.1186/gb-2002-3-7-research0034
11 sg:pub.10.1186/gb-2009-10-6-r64
12 https://doi.org/10.1016/s1470-2045(09)70154-8
13 schema:datePublished 2014
14 schema:datePublishedReg 2014-01-01
15 schema:description Reference genes have become the method of choice for normalization of qPCR data. It has been demonstrated in many studies that reference gene validation is essential to ensure accurate and reliable results. This chapter describes how a pilot study can be set up to identify the best set of reference genes to be used for normalization of qPCR data. The data from such a pilot study should be analyzed with dedicated algorithms such as geNorm to rank genes according to their stability--a measure for how well they are suited for normalization. geNorm also provides insights into the optimal number of reference genes and the overall quality of the selected set of reference genes. Importantly, these results are always in function of the sample type being studied. Guidelines are provided on the interpretation of the results from geNorm pilot studies as well as for the continued monitoring of reference gene quality in subsequent studies. For screening studies including a large, unbiased set of genes (e.g., complete miRNome) an alternative normalization method can be used: global mean normalization. This chapter also describes how the data from such studies can be used to identify reference genes for subsequent validation studies on smaller sets of selected genes.
16 schema:editor N2b9113e91cf34d4cbc95c0c117288ef6
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N4c5f5f3eec9d47b29f64e89bcbb34b9a
21 schema:name Selection of Reliable Reference Genes for RT-qPCR Analysis
22 schema:pagination 19-26
23 schema:productId N18c75aaef82f4730a03893f253d2acb1
24 N245d41b779a3429bbc3290448f5bcee9
25 N5cbce473ca554e33ac237cd77656fef4
26 N92d391071a1547aaa04850426e473f57
27 schema:publisher N1f955c3bd58e4c99ba95e3a878fedb33
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006137359
29 https://doi.org/10.1007/978-1-4939-0733-5_3
30 schema:sdDatePublished 2019-04-15T12:29
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N2d13402edb7e4bc0a6ee3c89d546ec36
33 schema:url http://link.springer.com/10.1007/978-1-4939-0733-5_3
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N18c75aaef82f4730a03893f253d2acb1 schema:name doi
38 schema:value 10.1007/978-1-4939-0733-5_3
39 rdf:type schema:PropertyValue
40 N1a946996cff04e11986dff49fd8b8add rdf:first sg:person.0615166774.28
41 rdf:rest rdf:nil
42 N1f955c3bd58e4c99ba95e3a878fedb33 schema:location New York, NY
43 schema:name Springer New York
44 rdf:type schema:Organisation
45 N222296584d4a4e6a99a124a343536838 schema:familyName Raso
46 schema:givenName Alessandro
47 rdf:type schema:Person
48 N245d41b779a3429bbc3290448f5bcee9 schema:name dimensions_id
49 schema:value pub.1006137359
50 rdf:type schema:PropertyValue
51 N2668ed90ec63498d9be951b72f70eea7 rdf:first N222296584d4a4e6a99a124a343536838
52 rdf:rest rdf:nil
53 N2b146b417d9f48b690ec01e050679f2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Reverse Transcriptase Polymerase Chain Reaction
55 rdf:type schema:DefinedTerm
56 N2b9113e91cf34d4cbc95c0c117288ef6 rdf:first N774be4e4e95340d390bdd8d897101616
57 rdf:rest N2668ed90ec63498d9be951b72f70eea7
58 N2d13402edb7e4bc0a6ee3c89d546ec36 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N40129bc4096c4a0a96760eb96028f1a6 schema:name Biogazelle, Technologiepark 3, 9052 Zwijnaarde, Belgium
61 rdf:type schema:Organization
62 N4c5f5f3eec9d47b29f64e89bcbb34b9a schema:isbn 978-1-4939-0732-8
63 978-1-4939-0733-5
64 schema:name Quantitative Real-Time PCR
65 rdf:type schema:Book
66 N5cbce473ca554e33ac237cd77656fef4 schema:name readcube_id
67 schema:value 1d3c4485f1a7783197269ef6db6d6585e1ccf2c059ba59a81d3d47cfc5a543d7
68 rdf:type schema:PropertyValue
69 N774be4e4e95340d390bdd8d897101616 schema:familyName Biassoni
70 schema:givenName Roberto
71 rdf:type schema:Person
72 N92d391071a1547aaa04850426e473f57 schema:name pubmed_id
73 schema:value 24740218
74 rdf:type schema:PropertyValue
75 N9bd615715161430ea287db63265154b9 schema:name Biogazelle, Technologiepark 3, 9052 Zwijnaarde, Belgium
76 rdf:type schema:Organization
77 Na7b038df64dc43669313a25a092fd73f rdf:first sg:person.01337400337.70
78 rdf:rest N1a946996cff04e11986dff49fd8b8add
79 Ne20b3a54f417449e8ef9ae070c6871e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Reference Standards
81 rdf:type schema:DefinedTerm
82 Nf57f2e93723c492f84fb2c1b70d34580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name MicroRNAs
84 rdf:type schema:DefinedTerm
85 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biological Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
89 schema:name Genetics
90 rdf:type schema:DefinedTerm
91 sg:person.01337400337.70 schema:affiliation N40129bc4096c4a0a96760eb96028f1a6
92 schema:familyName Hellemans
93 schema:givenName Jan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337400337.70
95 rdf:type schema:Person
96 sg:person.0615166774.28 schema:affiliation N9bd615715161430ea287db63265154b9
97 schema:familyName Vandesompele
98 schema:givenName Jo
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615166774.28
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-61779-427-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034502204
102 https://doi.org/10.1007/978-1-61779-427-8_18
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ng1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000034762
105 https://doi.org/10.1038/ng1453
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/sj.gene.6364190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037345611
108 https://doi.org/10.1038/sj.gene.6364190
109 rdf:type schema:CreativeWork
110 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
111 https://doi.org/10.1186/gb-2002-3-7-research0034
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/gb-2009-10-6-r64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394180
114 https://doi.org/10.1186/gb-2009-10-6-r64
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s1470-2045(09)70154-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039741127
117 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...