Conservation Laws in Cancer Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-09-23

AUTHORS

Antonio Fasano , Alessandro Bertuzzi , Carmela Sinisgalli

ABSTRACT

We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the “cell fluid.” We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice. More... »

PAGES

27-61

Book

TITLE

Mathematical Oncology 2013

ISBN

978-1-4939-0457-0
978-1-4939-0458-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4939-0458-7_2

DOI

http://dx.doi.org/10.1007/978-1-4939-0458-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019575023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Dipartimento di Matematica \u201cU. Dini\u201d, Universita\u2019 di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy", 
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasano", 
        "givenName": "Antonio", 
        "id": "sg:person.01261515206.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertuzzi", 
        "givenName": "Alessandro", 
        "id": "sg:person.01321457652.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinisgalli", 
        "givenName": "Carmela", 
        "id": "sg:person.01261114530.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-09-23", 
    "datePublishedReg": "2014-09-23", 
    "description": "We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the \u201ccell fluid.\u201d We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.", 
    "editor": [
      {
        "familyName": "d'Onofrio", 
        "givenName": "Alberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Gandolfi", 
        "givenName": "Alberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4939-0458-7_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4939-0457-0", 
        "978-1-4939-0458-7"
      ], 
      "name": "Mathematical Oncology 2013", 
      "type": "Book"
    }, 
    "keywords": [
      "two-fluid scheme", 
      "recent PDE", 
      "law", 
      "conservation laws", 
      "asymptotic configurations", 
      "presence of treatment", 
      "tumor cords", 
      "considerable difficulties", 
      "cell fluid", 
      "constitutive law", 
      "cancer modeling", 
      "opinion", 
      "practice", 
      "framework", 
      "reference", 
      "balance", 
      "interstitial liquid", 
      "difficulties", 
      "complex process", 
      "boundaries", 
      "system", 
      "process", 
      "constraints", 
      "clinical practice", 
      "axisymmetric geometry", 
      "scheme", 
      "core", 
      "analysis", 
      "conditions", 
      "determination", 
      "specification", 
      "cell motion", 
      "model", 
      "appearance", 
      "free boundary conditions", 
      "growth", 
      "treatment", 
      "multicellular spheroids", 
      "necrotic core", 
      "free boundary", 
      "saturation conditions", 
      "presence", 
      "motion", 
      "tumor spheroids", 
      "full system", 
      "configuration", 
      "momentum balance", 
      "PDE", 
      "stress", 
      "modeling", 
      "mathematical model", 
      "boundary conditions", 
      "fluid", 
      "yield stress", 
      "mechanical stress", 
      "geometry", 
      "liquid", 
      "cord", 
      "spheroids", 
      "cells", 
      "tumor growth", 
      "tumors", 
      "degraded necrotic core", 
      "Bingham-type law", 
      "multicomponent tumors"
    ], 
    "name": "Conservation Laws in Cancer Modeling", 
    "pagination": "27-61", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019575023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4939-0458-7_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4939-0458-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1019575023"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_121.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4939-0458-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0458-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0458-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0458-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4939-0458-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4939-0458-7_2 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author Nbbc6d31565434b3aa6fc93ba88e924d5
4 schema:datePublished 2014-09-23
5 schema:datePublishedReg 2014-09-23
6 schema:description We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the “cell fluid.” We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.
7 schema:editor N92e453dd23a94be3be4d007be7038bbf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na9d15847b9ce486f87aa13edfe40c40e
12 schema:keywords Bingham-type law
13 PDE
14 analysis
15 appearance
16 asymptotic configurations
17 axisymmetric geometry
18 balance
19 boundaries
20 boundary conditions
21 cancer modeling
22 cell fluid
23 cell motion
24 cells
25 clinical practice
26 complex process
27 conditions
28 configuration
29 conservation laws
30 considerable difficulties
31 constitutive law
32 constraints
33 cord
34 core
35 degraded necrotic core
36 determination
37 difficulties
38 fluid
39 framework
40 free boundary
41 free boundary conditions
42 full system
43 geometry
44 growth
45 interstitial liquid
46 law
47 liquid
48 mathematical model
49 mechanical stress
50 model
51 modeling
52 momentum balance
53 motion
54 multicellular spheroids
55 multicomponent tumors
56 necrotic core
57 opinion
58 practice
59 presence
60 presence of treatment
61 process
62 recent PDE
63 reference
64 saturation conditions
65 scheme
66 specification
67 spheroids
68 stress
69 system
70 treatment
71 tumor cords
72 tumor growth
73 tumor spheroids
74 tumors
75 two-fluid scheme
76 yield stress
77 schema:name Conservation Laws in Cancer Modeling
78 schema:pagination 27-61
79 schema:productId Nc24ce5288c5c4ec38c12d84442a01448
80 Ned43d865129c4a01ba81ed253619d0d2
81 schema:publisher N697da72d46134c9a972f00746259b850
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019575023
83 https://doi.org/10.1007/978-1-4939-0458-7_2
84 schema:sdDatePublished 2021-11-01T18:46
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Na154bf9badf14ffc92767cec54de1e00
87 schema:url https://doi.org/10.1007/978-1-4939-0458-7_2
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N01e331826b2e4caa85e0673e72ab588d schema:familyName Gandolfi
92 schema:givenName Alberto
93 rdf:type schema:Person
94 N1310dc9404644c9cbacdbca1ac52b8a8 rdf:first sg:person.01321457652.97
95 rdf:rest Ne96e8b9d32ea4029bf73dd537eb718b5
96 N35ebbb14736143ac901f06163754fb81 schema:familyName d'Onofrio
97 schema:givenName Alberto
98 rdf:type schema:Person
99 N438f322ce34f4405ae2bfa81e6eac637 rdf:first N01e331826b2e4caa85e0673e72ab588d
100 rdf:rest rdf:nil
101 N697da72d46134c9a972f00746259b850 schema:name Springer Nature
102 rdf:type schema:Organisation
103 N92e453dd23a94be3be4d007be7038bbf rdf:first N35ebbb14736143ac901f06163754fb81
104 rdf:rest N438f322ce34f4405ae2bfa81e6eac637
105 Na154bf9badf14ffc92767cec54de1e00 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Na9d15847b9ce486f87aa13edfe40c40e schema:isbn 978-1-4939-0457-0
108 978-1-4939-0458-7
109 schema:name Mathematical Oncology 2013
110 rdf:type schema:Book
111 Nbbc6d31565434b3aa6fc93ba88e924d5 rdf:first sg:person.01261515206.84
112 rdf:rest N1310dc9404644c9cbacdbca1ac52b8a8
113 Nc24ce5288c5c4ec38c12d84442a01448 schema:name doi
114 schema:value 10.1007/978-1-4939-0458-7_2
115 rdf:type schema:PropertyValue
116 Ne96e8b9d32ea4029bf73dd537eb718b5 rdf:first sg:person.01261114530.39
117 rdf:rest rdf:nil
118 Ned43d865129c4a01ba81ed253619d0d2 schema:name dimensions_id
119 schema:value pub.1019575023
120 rdf:type schema:PropertyValue
121 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
122 schema:name Law and Legal Studies
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Law
126 rdf:type schema:DefinedTerm
127 sg:person.01261114530.39 schema:affiliation grid-institutes:grid.419461.f
128 schema:familyName Sinisgalli
129 schema:givenName Carmela
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261114530.39
131 rdf:type schema:Person
132 sg:person.01261515206.84 schema:affiliation grid-institutes:grid.419461.f
133 schema:familyName Fasano
134 schema:givenName Antonio
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84
136 rdf:type schema:Person
137 sg:person.01321457652.97 schema:affiliation grid-institutes:grid.419461.f
138 schema:familyName Bertuzzi
139 schema:givenName Alessandro
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97
141 rdf:type schema:Person
142 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
143 schema:name Dipartimento di Matematica “U. Dini”, Universita’ di Firenze, Viale Morgagni 67/A, 50134, Firenze, Italy
144 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...