The Spectroscopy of Crystal Growth Surface Intermediates on Silicon View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

M. A. Chesters , A. B. Horn , E. J. C. Kellar , S. F. Parker , R. Raval

ABSTRACT

The direct spectroscopic analysis of the monolayer of intermediate species present during crystal growth by CYD methods remains a very desirable goal which has yet to be achieved. While the application of i.r. spectroscopy to analysis of sub-monolayers on metal single crystal surfaces is widespread, using the reflection-absorption technique1,2 (RAIRS), a similar approach to semiconductor surfaces is less sensitive and open to a number of variations. The most successful of these is the attenuated total reflectance (ATR) method in which the i.r. beam is channelled inside the crystal, which has bevelled edges in the form of an ATR prism, Fig. 1. Good quality spectra of surface SiHn species have been recorded using ~50 reflections3. The ATR technique cannot be applied to crystals which absorb i.r. radiation, even weakly, because of the considerable internal path length (~10 cm for 50 reflections). For this reason the multi-phonon absorption bands of silicon limit its use to the region above ~1000 cm−1 so that the silicon-hydrogen deformation modes are inaccessible. It may also be difficult to use the ATR method routinely under growth conditions because of the constraints on sample dimensions and difficulty of alignment. More... »

PAGES

103-109

Book

TITLE

Mechanisms of Reactions of Organometallic Compounds with Surfaces

ISBN

978-1-4899-2524-4
978-1-4899-2522-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-2522-0_13

DOI

http://dx.doi.org/10.1007/978-1-4899-2522-0_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040145919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chesters", 
        "givenName": "M. A.", 
        "id": "sg:person.012475463547.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475463547.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horn", 
        "givenName": "A. B.", 
        "id": "sg:person.07651616751.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651616751.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kellar", 
        "givenName": "E. J. C.", 
        "id": "sg:person.0741722563.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741722563.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parker", 
        "givenName": "S. F.", 
        "id": "sg:person.01262340414.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262340414.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raval", 
        "givenName": "R.", 
        "id": "sg:person.0642714543.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642714543.97"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "The direct spectroscopic analysis of the monolayer of intermediate species present during crystal growth by CYD methods remains a very desirable goal which has yet to be achieved. While the application of i.r. spectroscopy to analysis of sub-monolayers on metal single crystal surfaces is widespread, using the reflection-absorption technique1,2 (RAIRS), a similar approach to semiconductor surfaces is less sensitive and open to a number of variations. The most successful of these is the attenuated total reflectance (ATR) method in which the i.r. beam is channelled inside the crystal, which has bevelled edges in the form of an ATR prism, Fig. 1. Good quality spectra of surface SiHn species have been recorded using ~50 reflections3. The ATR technique cannot be applied to crystals which absorb i.r. radiation, even weakly, because of the considerable internal path length (~10 cm for 50 reflections). For this reason the multi-phonon absorption bands of silicon limit its use to the region above ~1000 cm\u22121 so that the silicon-hydrogen deformation modes are inaccessible. It may also be difficult to use the ATR method routinely under growth conditions because of the constraints on sample dimensions and difficulty of alignment.", 
    "editor": [
      {
        "familyName": "Cole-Hamilton", 
        "givenName": "D. J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Williams", 
        "givenName": "J. O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-2522-0_13", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-2524-4", 
        "978-1-4899-2522-0"
      ], 
      "name": "Mechanisms of Reactions of Organometallic Compounds with Surfaces", 
      "type": "Book"
    }, 
    "keywords": [
      "metal single crystal surfaces", 
      "single crystal surfaces", 
      "direct spectroscopic analysis", 
      "total reflectance (ATR) method", 
      "good quality spectra", 
      "surface intermediates", 
      "intermediate species", 
      "spectroscopic analysis", 
      "absorption bands", 
      "crystal surface", 
      "semiconductor surfaces", 
      "ATR technique", 
      "crystal growth", 
      "internal path length", 
      "ATR prism", 
      "spectroscopy", 
      "ATR method", 
      "quality spectra", 
      "crystals", 
      "surface", 
      "reflectance method", 
      "intermediates", 
      "sample dimensions", 
      "monolayers", 
      "number of variations", 
      "path length", 
      "spectra", 
      "silicon", 
      "species", 
      "similar approach", 
      "method", 
      "Fig. 1", 
      "difficulty of alignment", 
      "beam", 
      "band", 
      "constraints", 
      "applications", 
      "growth conditions", 
      "edge", 
      "dimensions", 
      "desirable goal", 
      "mode", 
      "analysis", 
      "technique", 
      "conditions", 
      "approach", 
      "radiation", 
      "form", 
      "number", 
      "prism", 
      "length", 
      "alignment", 
      "deformation modes", 
      "use", 
      "difficulties", 
      "variation", 
      "growth", 
      "goal", 
      "region", 
      "reasons"
    ], 
    "name": "The Spectroscopy of Crystal Growth Surface Intermediates on Silicon", 
    "pagination": "103-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040145919"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-2522-0_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-2522-0_13", 
      "https://app.dimensions.ai/details/publication/pub.1040145919"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_123.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-2522-0_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2522-0_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2522-0_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2522-0_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2522-0_13'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      87 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-2522-0_13 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0306
5 schema:author N042baddb6ded4c99a5383a2813a2405c
6 schema:datePublished 1989
7 schema:datePublishedReg 1989-01-01
8 schema:description The direct spectroscopic analysis of the monolayer of intermediate species present during crystal growth by CYD methods remains a very desirable goal which has yet to be achieved. While the application of i.r. spectroscopy to analysis of sub-monolayers on metal single crystal surfaces is widespread, using the reflection-absorption technique1,2 (RAIRS), a similar approach to semiconductor surfaces is less sensitive and open to a number of variations. The most successful of these is the attenuated total reflectance (ATR) method in which the i.r. beam is channelled inside the crystal, which has bevelled edges in the form of an ATR prism, Fig. 1. Good quality spectra of surface SiHn species have been recorded using ~50 reflections3. The ATR technique cannot be applied to crystals which absorb i.r. radiation, even weakly, because of the considerable internal path length (~10 cm for 50 reflections). For this reason the multi-phonon absorption bands of silicon limit its use to the region above ~1000 cm−1 so that the silicon-hydrogen deformation modes are inaccessible. It may also be difficult to use the ATR method routinely under growth conditions because of the constraints on sample dimensions and difficulty of alignment.
9 schema:editor N1798d71599da450dbeb69f565cfd958c
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N227b6f52bb6a4d27b96fdefc047c4642
13 schema:keywords ATR method
14 ATR prism
15 ATR technique
16 Fig. 1
17 absorption bands
18 alignment
19 analysis
20 applications
21 approach
22 band
23 beam
24 conditions
25 constraints
26 crystal growth
27 crystal surface
28 crystals
29 deformation modes
30 desirable goal
31 difficulties
32 difficulty of alignment
33 dimensions
34 direct spectroscopic analysis
35 edge
36 form
37 goal
38 good quality spectra
39 growth
40 growth conditions
41 intermediate species
42 intermediates
43 internal path length
44 length
45 metal single crystal surfaces
46 method
47 mode
48 monolayers
49 number
50 number of variations
51 path length
52 prism
53 quality spectra
54 radiation
55 reasons
56 reflectance method
57 region
58 sample dimensions
59 semiconductor surfaces
60 silicon
61 similar approach
62 single crystal surfaces
63 species
64 spectra
65 spectroscopic analysis
66 spectroscopy
67 surface
68 surface intermediates
69 technique
70 total reflectance (ATR) method
71 use
72 variation
73 schema:name The Spectroscopy of Crystal Growth Surface Intermediates on Silicon
74 schema:pagination 103-109
75 schema:productId Nc894e6b6e2c5493db475f42cda19d174
76 Ndfc7db7f757346ff8dc338430b33c20a
77 schema:publisher N2ff8747e4ba648f4bf73aa2ed02d6a84
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040145919
79 https://doi.org/10.1007/978-1-4899-2522-0_13
80 schema:sdDatePublished 2022-10-01T06:52
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N4a3b06d1492d44f9b581b40c949049b1
83 schema:url https://doi.org/10.1007/978-1-4899-2522-0_13
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N0052615266a3475bafbe45b8efa57f40 rdf:first sg:person.07651616751.79
88 rdf:rest N9ef82dcd18b54c12a90b2530c41fb58e
89 N042baddb6ded4c99a5383a2813a2405c rdf:first sg:person.012475463547.51
90 rdf:rest N0052615266a3475bafbe45b8efa57f40
91 N1798d71599da450dbeb69f565cfd958c rdf:first Neabb955b37394fb4b5f5c10d896d006a
92 rdf:rest N213f859460c741838cc208a4b26115f8
93 N1919eacbb27f4cd99ee7fcd09a22436e rdf:first sg:person.01262340414.36
94 rdf:rest Nd2824f6fca23444990db29927fdff8a5
95 N213f859460c741838cc208a4b26115f8 rdf:first Nf860a161ff904cb1a190670586b90a79
96 rdf:rest rdf:nil
97 N227b6f52bb6a4d27b96fdefc047c4642 schema:isbn 978-1-4899-2522-0
98 978-1-4899-2524-4
99 schema:name Mechanisms of Reactions of Organometallic Compounds with Surfaces
100 rdf:type schema:Book
101 N2ff8747e4ba648f4bf73aa2ed02d6a84 schema:name Springer Nature
102 rdf:type schema:Organisation
103 N4a3b06d1492d44f9b581b40c949049b1 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N9ef82dcd18b54c12a90b2530c41fb58e rdf:first sg:person.0741722563.45
106 rdf:rest N1919eacbb27f4cd99ee7fcd09a22436e
107 Nc894e6b6e2c5493db475f42cda19d174 schema:name doi
108 schema:value 10.1007/978-1-4899-2522-0_13
109 rdf:type schema:PropertyValue
110 Nd2824f6fca23444990db29927fdff8a5 rdf:first sg:person.0642714543.97
111 rdf:rest rdf:nil
112 Ndfc7db7f757346ff8dc338430b33c20a schema:name dimensions_id
113 schema:value pub.1040145919
114 rdf:type schema:PropertyValue
115 Neabb955b37394fb4b5f5c10d896d006a schema:familyName Cole-Hamilton
116 schema:givenName D. J.
117 rdf:type schema:Person
118 Nf860a161ff904cb1a190670586b90a79 schema:familyName Williams
119 schema:givenName J. O.
120 rdf:type schema:Person
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
125 schema:name Other Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
131 schema:name Physical Chemistry (incl. Structural)
132 rdf:type schema:DefinedTerm
133 sg:person.012475463547.51 schema:affiliation grid-institutes:grid.8273.e
134 schema:familyName Chesters
135 schema:givenName M. A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012475463547.51
137 rdf:type schema:Person
138 sg:person.01262340414.36 schema:affiliation grid-institutes:grid.8273.e
139 schema:familyName Parker
140 schema:givenName S. F.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262340414.36
142 rdf:type schema:Person
143 sg:person.0642714543.97 schema:affiliation grid-institutes:grid.8273.e
144 schema:familyName Raval
145 schema:givenName R.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642714543.97
147 rdf:type schema:Person
148 sg:person.0741722563.45 schema:affiliation grid-institutes:grid.8273.e
149 schema:familyName Kellar
150 schema:givenName E. J. C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741722563.45
152 rdf:type schema:Person
153 sg:person.07651616751.79 schema:affiliation grid-institutes:grid.8273.e
154 schema:familyName Horn
155 schema:givenName A. B.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651616751.79
157 rdf:type schema:Person
158 grid-institutes:grid.8273.e schema:alternateName School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
159 schema:name School of Chemical Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...