Fluid Dynamical Limits of Discrete Kinetic Theories View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

David Levermore

ABSTRACT

The determination of fluid dynamical limits is presented for a class of discrete kinetic theories. The interrelationship between the concepts of equilibria, conservation, and dissipation through that of entropy is shown to be critical. This relationship is provided by an abstraction of the classical physical entropy as it is manifest in Boltzmann’s H-theorem. Formal derivations of generalized compressible Euler systems and generalized incompressible Navier-Stokes systems are indicated. The implications of this analysis for the implementation of fluid simulations is discussed. More... »

PAGES

173-185

References to SciGraph publications

Book

TITLE

Microscopic Simulations of Complex Hydrodynamic Phenomena

ISBN

978-1-4899-2316-5
978-1-4899-2314-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-2314-1_14

DOI

http://dx.doi.org/10.1007/978-1-4899-2314-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048236189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Mathematics, University of Arizona, Tucson, AZ\u00a085721, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levermore", 
        "givenName": "David", 
        "id": "sg:person.014173467443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01026608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034122195", 
          "https://doi.org/10.1007/bf01026608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01026608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034122195", 
          "https://doi.org/10.1007/bf01026608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1030045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062862674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/7/3/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "The determination of fluid dynamical limits is presented for a class of discrete kinetic theories. The interrelationship between the concepts of equilibria, conservation, and dissipation through that of entropy is shown to be critical. This relationship is provided by an abstraction of the classical physical entropy as it is manifest in Boltzmann\u2019s H-theorem. Formal derivations of generalized compressible Euler systems and generalized incompressible Navier-Stokes systems are indicated. The implications of this analysis for the implementation of fluid simulations is discussed.", 
    "editor": [
      {
        "familyName": "Mareschal", 
        "givenName": "Michel", 
        "type": "Person"
      }, 
      {
        "familyName": "Holian", 
        "givenName": "Brad Lee", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-2314-1_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-2316-5", 
        "978-1-4899-2314-1"
      ], 
      "name": "Microscopic Simulations of Complex Hydrodynamic Phenomena", 
      "type": "Book"
    }, 
    "name": "Fluid Dynamical Limits of Discrete Kinetic Theories", 
    "pagination": "173-185", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-2314-1_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5ca892800ccfa167db11dbe88975c521162dc062272644eaccf39775c3ca9d4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048236189"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-2314-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1048236189"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4899-2314-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2314-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2314-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2314-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2314-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-2314-1_14 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na8942fdcf29f47e1bfd9b52705351bfc
4 schema:citation sg:pub.10.1007/bf01026608
5 sg:pub.10.1007/bf02547354
6 https://doi.org/10.1103/physrev.94.511
7 https://doi.org/10.1103/physrevlett.56.1505
8 https://doi.org/10.1137/1030045
9 https://doi.org/10.1209/0295-5075/7/3/008
10 schema:datePublished 1992
11 schema:datePublishedReg 1992-01-01
12 schema:description The determination of fluid dynamical limits is presented for a class of discrete kinetic theories. The interrelationship between the concepts of equilibria, conservation, and dissipation through that of entropy is shown to be critical. This relationship is provided by an abstraction of the classical physical entropy as it is manifest in Boltzmann’s H-theorem. Formal derivations of generalized compressible Euler systems and generalized incompressible Navier-Stokes systems are indicated. The implications of this analysis for the implementation of fluid simulations is discussed.
13 schema:editor Ndbf5954aa7e54d5c9c148bb682c7bef1
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N66018416c3664fa9a95594ad98c90fda
18 schema:name Fluid Dynamical Limits of Discrete Kinetic Theories
19 schema:pagination 173-185
20 schema:productId N0520821c10ef4507af6865183a5dea29
21 N09bdf53e938f4189a500fe3dae1d4722
22 N8ba0556b321149ed8eb667a69e7a8ff1
23 schema:publisher N0fee2b04516844fcb8d8ba4d78380754
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048236189
25 https://doi.org/10.1007/978-1-4899-2314-1_14
26 schema:sdDatePublished 2019-04-15T23:55
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N4acbca08bc53410397d3bab0e8d27643
29 schema:url http://link.springer.com/10.1007/978-1-4899-2314-1_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0520821c10ef4507af6865183a5dea29 schema:name dimensions_id
34 schema:value pub.1048236189
35 rdf:type schema:PropertyValue
36 N09bdf53e938f4189a500fe3dae1d4722 schema:name readcube_id
37 schema:value e5ca892800ccfa167db11dbe88975c521162dc062272644eaccf39775c3ca9d4
38 rdf:type schema:PropertyValue
39 N0fee2b04516844fcb8d8ba4d78380754 schema:location Boston, MA
40 schema:name Springer US
41 rdf:type schema:Organisation
42 N16c68de992b94888a7b87c74069f7c8b rdf:first Nfbaa73f200234d7b9ee3c7254cb95e33
43 rdf:rest rdf:nil
44 N203909844edd4689839541cb9aeac95a schema:familyName Mareschal
45 schema:givenName Michel
46 rdf:type schema:Person
47 N4acbca08bc53410397d3bab0e8d27643 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N66018416c3664fa9a95594ad98c90fda schema:isbn 978-1-4899-2314-1
50 978-1-4899-2316-5
51 schema:name Microscopic Simulations of Complex Hydrodynamic Phenomena
52 rdf:type schema:Book
53 N8ba0556b321149ed8eb667a69e7a8ff1 schema:name doi
54 schema:value 10.1007/978-1-4899-2314-1_14
55 rdf:type schema:PropertyValue
56 Na8942fdcf29f47e1bfd9b52705351bfc rdf:first sg:person.014173467443.78
57 rdf:rest rdf:nil
58 Ndbf5954aa7e54d5c9c148bb682c7bef1 rdf:first N203909844edd4689839541cb9aeac95a
59 rdf:rest N16c68de992b94888a7b87c74069f7c8b
60 Nfbaa73f200234d7b9ee3c7254cb95e33 schema:familyName Holian
61 schema:givenName Brad Lee
62 rdf:type schema:Person
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:person.014173467443.78 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
70 schema:familyName Levermore
71 schema:givenName David
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78
73 rdf:type schema:Person
74 sg:pub.10.1007/bf01026608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034122195
75 https://doi.org/10.1007/bf01026608
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
78 https://doi.org/10.1007/bf02547354
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrevlett.56.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792961
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1137/1030045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062862674
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1209/0295-5075/7/3/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231305
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
89 schema:name Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...