The Peculiar Motion of Electrons in Amorphous Semiconductors View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

Marc A. Kastner

ABSTRACT

In the early 1900’s, physicists described a conducting material as a box filled with electrons. The current in the metal was understood to be carried by the electrons drifting in an applied electric field. This works in the following way: if the field is E and the charge on the electron is q, then the force on the electron is qE and the electron experiences an acceleration qE/m, where m is its mass. The electron does not accelerate indefinitely, however. Rather, it slows down because it scatters from the atoms in the metal or from impurities. This scattering acts like a factional force which keeps the electrons from moving faster and faster, and, instead, they reach a constant drift velocity vd. The relationship between vd and the acceleration is (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {v_d} = \frac{{eE}} {m}\tau $$\end{document} where τ is the time between collisions (called the scattering time), or, equivalently, the time it would take for the electron to stop if the field were turned off. Equation (1) shows that the drift velocity is proportional to the field and the proportionality constant is called the mobility, μ. More... »

PAGES

381-396

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-2260-1_13

DOI

http://dx.doi.org/10.1007/978-1-4899-2260-1_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019447318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Center for Materials Science and Engineering and Research Laboratory for Electronics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Center for Materials Science and Engineering and Research Laboratory for Electronics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastner", 
        "givenName": "Marc A.", 
        "id": "sg:person.011522436652.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "In the early 1900\u2019s, physicists described a conducting material as a box filled with electrons. The current in the metal was understood to be carried by the electrons drifting in an applied electric field. This works in the following way: if the field is E and the charge on the electron is q, then the force on the electron is qE and the electron experiences an acceleration qE/m, where m is its mass. The electron does not accelerate indefinitely, however. Rather, it slows down because it scatters from the atoms in the metal or from impurities. This scattering acts like a factional force which keeps the electrons from moving faster and faster, and, instead, they reach a constant drift velocity vd. The relationship between vd and the acceleration is (1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n{v_d} = \\frac{{eE}}\n{m}\\tau $$\\end{document}\nwhere \u03c4 is the time between collisions (called the scattering time), or, equivalently, the time it would take for the electron to stop if the field were turned off. Equation (1) shows that the drift velocity is proportional to the field and the proportionality constant is called the mobility, \u03bc.", 
    "editor": [
      {
        "familyName": "Adler", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Schwartz", 
        "givenName": "Brian B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Steele", 
        "givenName": "Martin C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-2260-1_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-2262-5", 
        "978-1-4899-2260-1"
      ], 
      "name": "Physical Properties of Amorphous Materials", 
      "type": "Book"
    }, 
    "keywords": [
      "drift velocity vd", 
      "peculiar motions", 
      "drift velocity", 
      "electric field", 
      "electrons", 
      "velocity Vd", 
      "amorphous semiconductors", 
      "factional forces", 
      "field", 
      "semiconductors", 
      "collisions", 
      "proportionality constant", 
      "atoms", 
      "physicists", 
      "impurities", 
      "QE", 
      "charge", 
      "acceleration", 
      "metals", 
      "current", 
      "constants", 
      "motion", 
      "force", 
      "mass", 
      "velocity", 
      "mobility", 
      "following way", 
      "VD", 
      "materials", 
      "equations", 
      "time", 
      "box", 
      "way", 
      "act", 
      "relationship", 
      "QE/", 
      "acceleration qE/", 
      "constant drift velocity vd"
    ], 
    "name": "The Peculiar Motion of Electrons in Amorphous Semiconductors", 
    "pagination": "381-396", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019447318"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-2260-1_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-2260-1_13", 
      "https://app.dimensions.ai/details/publication/pub.1019447318"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_221.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-2260-1_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2260-1_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2260-1_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2260-1_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-2260-1_13'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-2260-1_13 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N6bd27ea8579849b592b625aa9e7ec382
4 schema:datePublished 1985
5 schema:datePublishedReg 1985-01-01
6 schema:description In the early 1900’s, physicists described a conducting material as a box filled with electrons. The current in the metal was understood to be carried by the electrons drifting in an applied electric field. This works in the following way: if the field is E and the charge on the electron is q, then the force on the electron is qE and the electron experiences an acceleration qE/m, where m is its mass. The electron does not accelerate indefinitely, however. Rather, it slows down because it scatters from the atoms in the metal or from impurities. This scattering acts like a factional force which keeps the electrons from moving faster and faster, and, instead, they reach a constant drift velocity vd. The relationship between vd and the acceleration is (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {v_d} = \frac{{eE}} {m}\tau $$\end{document} where τ is the time between collisions (called the scattering time), or, equivalently, the time it would take for the electron to stop if the field were turned off. Equation (1) shows that the drift velocity is proportional to the field and the proportionality constant is called the mobility, μ.
7 schema:editor Nd75af17ca8494b37add20910e376e719
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbf37cc43f16d4ed091d6db29402297a5
12 schema:keywords QE
13 QE/
14 VD
15 acceleration
16 acceleration qE/
17 act
18 amorphous semiconductors
19 atoms
20 box
21 charge
22 collisions
23 constant drift velocity vd
24 constants
25 current
26 drift velocity
27 drift velocity vd
28 electric field
29 electrons
30 equations
31 factional forces
32 field
33 following way
34 force
35 impurities
36 mass
37 materials
38 metals
39 mobility
40 motion
41 peculiar motions
42 physicists
43 proportionality constant
44 relationship
45 semiconductors
46 time
47 velocity
48 velocity Vd
49 way
50 schema:name The Peculiar Motion of Electrons in Amorphous Semiconductors
51 schema:pagination 381-396
52 schema:productId N60b70c7ac6f740248e14442d253347e8
53 Nb2bc19e9da0d40e79a24699cee78af55
54 schema:publisher Nb8c472777b994361a9536047a791e46f
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019447318
56 https://doi.org/10.1007/978-1-4899-2260-1_13
57 schema:sdDatePublished 2022-01-01T19:12
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nedc4accc54214e4fb562bf540abc5938
60 schema:url https://doi.org/10.1007/978-1-4899-2260-1_13
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N20eca3d6b5fa473297eb77ea6219fb19 rdf:first Nd924fc484f1a4741aed971cb5eaae9b4
65 rdf:rest rdf:nil
66 N41b181d61c1e48088ef7fcb5c3f2b06e schema:familyName Schwartz
67 schema:givenName Brian B.
68 rdf:type schema:Person
69 N60b70c7ac6f740248e14442d253347e8 schema:name doi
70 schema:value 10.1007/978-1-4899-2260-1_13
71 rdf:type schema:PropertyValue
72 N6bd27ea8579849b592b625aa9e7ec382 rdf:first sg:person.011522436652.55
73 rdf:rest rdf:nil
74 N92afa63f08ae487c869a2ac8a91370de schema:familyName Adler
75 schema:givenName David
76 rdf:type schema:Person
77 Na4aafce11ffd4154bdfbd74d86ac372b rdf:first N41b181d61c1e48088ef7fcb5c3f2b06e
78 rdf:rest N20eca3d6b5fa473297eb77ea6219fb19
79 Nb2bc19e9da0d40e79a24699cee78af55 schema:name dimensions_id
80 schema:value pub.1019447318
81 rdf:type schema:PropertyValue
82 Nb8c472777b994361a9536047a791e46f schema:name Springer Nature
83 rdf:type schema:Organisation
84 Nbf37cc43f16d4ed091d6db29402297a5 schema:isbn 978-1-4899-2260-1
85 978-1-4899-2262-5
86 schema:name Physical Properties of Amorphous Materials
87 rdf:type schema:Book
88 Nd75af17ca8494b37add20910e376e719 rdf:first N92afa63f08ae487c869a2ac8a91370de
89 rdf:rest Na4aafce11ffd4154bdfbd74d86ac372b
90 Nd924fc484f1a4741aed971cb5eaae9b4 schema:familyName Steele
91 schema:givenName Martin C.
92 rdf:type schema:Person
93 Nedc4accc54214e4fb562bf540abc5938 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
99 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
100 rdf:type schema:DefinedTerm
101 sg:person.011522436652.55 schema:affiliation grid-institutes:grid.116068.8
102 schema:familyName Kastner
103 schema:givenName Marc A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55
105 rdf:type schema:Person
106 grid-institutes:grid.116068.8 schema:alternateName Department of Physics, Center for Materials Science and Engineering and Research Laboratory for Electronics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
107 schema:name Department of Physics, Center for Materials Science and Engineering and Research Laboratory for Electronics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...