Fractal Dynamics of Earthquakes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1995

AUTHORS

P. Bak , K. Chen

ABSTRACT

Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven. More... »

PAGES

227-236

Book

TITLE

Fractals in the Earth Sciences

ISBN

978-1-4899-1399-9
978-1-4899-1397-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11

DOI

http://dx.doi.org/10.1007/978-1-4899-1397-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033578310


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "P.", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "K.", 
        "id": "sg:person.01142172076.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172076.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven.", 
    "editor": [
      {
        "familyName": "Barton", 
        "givenName": "Christopher C.", 
        "type": "Person"
      }, 
      {
        "familyName": "La Pointe", 
        "givenName": "Paul R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-1397-5_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-1399-9", 
        "978-1-4899-1397-5"
      ], 
      "name": "Fractals in the Earth Sciences", 
      "type": "Book"
    }, 
    "keywords": [
      "self-similar structure", 
      "geometrical observations", 
      "fractal dynamics", 
      "dynamical processes", 
      "computer simulation", 
      "trivial observation", 
      "spatial structure", 
      "dynamics", 
      "physical explanation", 
      "simulations", 
      "electrical breakdown", 
      "turbulence", 
      "large distances", 
      "spatial properties", 
      "objects", 
      "system", 
      "structure", 
      "means", 
      "properties", 
      "nature", 
      "observations", 
      "characterization", 
      "distance", 
      "process", 
      "earthquakes", 
      "efforts", 
      "breakdown", 
      "explanation", 
      "origin", 
      "landscape", 
      "mountain landscapes", 
      "self-similar fractal spatial structure", 
      "fractal spatial structure", 
      "empirical geometrical observation"
    ], 
    "name": "Fractal Dynamics of Earthquakes", 
    "pagination": "227-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033578310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-1397-5_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-1397-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1033578310"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_358.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-1397-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-1397-5_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na18d67f65d184c82a1ca01c85770e70e
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven.
7 schema:editor N2bb3fd7535234bfaa29d1b2f1b0a0b10
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N47e2d720517c484eb7ca10f7ab1c03b4
12 schema:keywords breakdown
13 characterization
14 computer simulation
15 distance
16 dynamical processes
17 dynamics
18 earthquakes
19 efforts
20 electrical breakdown
21 empirical geometrical observation
22 explanation
23 fractal dynamics
24 fractal spatial structure
25 geometrical observations
26 landscape
27 large distances
28 means
29 mountain landscapes
30 nature
31 objects
32 observations
33 origin
34 physical explanation
35 process
36 properties
37 self-similar fractal spatial structure
38 self-similar structure
39 simulations
40 spatial properties
41 spatial structure
42 structure
43 system
44 trivial observation
45 turbulence
46 schema:name Fractal Dynamics of Earthquakes
47 schema:pagination 227-236
48 schema:productId N5e589588a1454be5856a1d1558aad401
49 N9617499d3cb14c74b7083de3270df237
50 schema:publisher N97980ee1b90e4ff6a647c153f3c11f3c
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033578310
52 https://doi.org/10.1007/978-1-4899-1397-5_11
53 schema:sdDatePublished 2022-01-01T19:20
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nfb83a3b730554878ae926011a64c08e8
56 schema:url https://doi.org/10.1007/978-1-4899-1397-5_11
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N1a329d0d8e0d4d1ab2fe23546a35bc60 schema:familyName Barton
61 schema:givenName Christopher C.
62 rdf:type schema:Person
63 N23ec9c78a7eb4b52a415039afa2c6496 rdf:first sg:person.01142172076.47
64 rdf:rest rdf:nil
65 N2bb3fd7535234bfaa29d1b2f1b0a0b10 rdf:first N1a329d0d8e0d4d1ab2fe23546a35bc60
66 rdf:rest Nfedeed03921f42e7b70857f17d7b43f4
67 N47e2d720517c484eb7ca10f7ab1c03b4 schema:isbn 978-1-4899-1397-5
68 978-1-4899-1399-9
69 schema:name Fractals in the Earth Sciences
70 rdf:type schema:Book
71 N5e589588a1454be5856a1d1558aad401 schema:name dimensions_id
72 schema:value pub.1033578310
73 rdf:type schema:PropertyValue
74 N68a23a72fe6447e3ae24bd179517a995 schema:familyName La Pointe
75 schema:givenName Paul R.
76 rdf:type schema:Person
77 N9617499d3cb14c74b7083de3270df237 schema:name doi
78 schema:value 10.1007/978-1-4899-1397-5_11
79 rdf:type schema:PropertyValue
80 N97980ee1b90e4ff6a647c153f3c11f3c schema:name Springer Nature
81 rdf:type schema:Organisation
82 Na18d67f65d184c82a1ca01c85770e70e rdf:first sg:person.010472724377.34
83 rdf:rest N23ec9c78a7eb4b52a415039afa2c6496
84 Nfb83a3b730554878ae926011a64c08e8 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfedeed03921f42e7b70857f17d7b43f4 rdf:first N68a23a72fe6447e3ae24bd179517a995
87 rdf:rest rdf:nil
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
95 schema:familyName Bak
96 schema:givenName P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
98 rdf:type schema:Person
99 sg:person.01142172076.47 schema:affiliation grid-institutes:grid.202665.5
100 schema:familyName Chen
101 schema:givenName K.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172076.47
103 rdf:type schema:Person
104 grid-institutes:grid.202665.5 schema:alternateName Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
105 schema:name Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...