Fractal Dynamics of Earthquakes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1995

AUTHORS

P. Bak , K. Chen

ABSTRACT

Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven. More... »

PAGES

227-236

Book

TITLE

Fractals in the Earth Sciences

ISBN

978-1-4899-1399-9
978-1-4899-1397-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11

DOI

http://dx.doi.org/10.1007/978-1-4899-1397-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033578310


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "P.", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "K.", 
        "id": "sg:person.01142172076.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172076.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven.", 
    "editor": [
      {
        "familyName": "Barton", 
        "givenName": "Christopher C.", 
        "type": "Person"
      }, 
      {
        "familyName": "La Pointe", 
        "givenName": "Paul R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-1397-5_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-1399-9", 
        "978-1-4899-1397-5"
      ], 
      "name": "Fractals in the Earth Sciences", 
      "type": "Book"
    }, 
    "keywords": [
      "self-similar structure", 
      "geometrical observations", 
      "fractal dynamics", 
      "dynamical processes", 
      "computer simulation", 
      "trivial observation", 
      "spatial structure", 
      "dynamics", 
      "physical explanation", 
      "simulations", 
      "electrical breakdown", 
      "turbulence", 
      "large distances", 
      "spatial properties", 
      "objects", 
      "system", 
      "structure", 
      "means", 
      "properties", 
      "nature", 
      "observations", 
      "characterization", 
      "distance", 
      "process", 
      "earthquakes", 
      "efforts", 
      "breakdown", 
      "explanation", 
      "origin", 
      "landscape", 
      "mountain landscapes", 
      "self-similar fractal spatial structure", 
      "fractal spatial structure", 
      "empirical geometrical observation"
    ], 
    "name": "Fractal Dynamics of Earthquakes", 
    "pagination": "227-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033578310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-1397-5_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-1397-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1033578310"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_318.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-1397-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1397-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-1397-5_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na7a8368ed7224227bdd9660de0f1a5ad
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure (Mandelbrot, 1982). This is by no means a trivial observation, since it implies that systems are correlated over large distances. Much effort has been put into computer simulation and characterization of these objects. However the empirical geometrical observation and characterization do not by themselves serve as a physical explanation. It seems obvious that to understand the origin of self-similar structures, we must understand the nature of the dynamical processes that created them: Temporal and spatial properties must necessarily be completely interwoven.
7 schema:editor N043309aac13e4511b795c5fa71294e0a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb74663f51ed94877b833b91654bc4d8f
12 schema:keywords breakdown
13 characterization
14 computer simulation
15 distance
16 dynamical processes
17 dynamics
18 earthquakes
19 efforts
20 electrical breakdown
21 empirical geometrical observation
22 explanation
23 fractal dynamics
24 fractal spatial structure
25 geometrical observations
26 landscape
27 large distances
28 means
29 mountain landscapes
30 nature
31 objects
32 observations
33 origin
34 physical explanation
35 process
36 properties
37 self-similar fractal spatial structure
38 self-similar structure
39 simulations
40 spatial properties
41 spatial structure
42 structure
43 system
44 trivial observation
45 turbulence
46 schema:name Fractal Dynamics of Earthquakes
47 schema:pagination 227-236
48 schema:productId N255df9cc0b8f4dd593dc9c7860b4d4ca
49 N93a4c5d0ce804eaa8757393664f6bec7
50 schema:publisher N61e473684fb947d997945ee5b0bc04c9
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033578310
52 https://doi.org/10.1007/978-1-4899-1397-5_11
53 schema:sdDatePublished 2021-12-01T20:05
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nf8fbfd436d514003aab947964702cd4c
56 schema:url https://doi.org/10.1007/978-1-4899-1397-5_11
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N043309aac13e4511b795c5fa71294e0a rdf:first Nfa0f651124e7488daab6309e1d788bc1
61 rdf:rest N54ae6593c2ef4b55b7cc257f4803646a
62 N255df9cc0b8f4dd593dc9c7860b4d4ca schema:name dimensions_id
63 schema:value pub.1033578310
64 rdf:type schema:PropertyValue
65 N54ae6593c2ef4b55b7cc257f4803646a rdf:first Nd849d449d2f94ef2b91e2c83ec11479e
66 rdf:rest rdf:nil
67 N61e473684fb947d997945ee5b0bc04c9 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N93a4c5d0ce804eaa8757393664f6bec7 schema:name doi
70 schema:value 10.1007/978-1-4899-1397-5_11
71 rdf:type schema:PropertyValue
72 Na7a8368ed7224227bdd9660de0f1a5ad rdf:first sg:person.010472724377.34
73 rdf:rest Nd9a196d2159e48cfafd3f098ee7019f4
74 Nb74663f51ed94877b833b91654bc4d8f schema:isbn 978-1-4899-1397-5
75 978-1-4899-1399-9
76 schema:name Fractals in the Earth Sciences
77 rdf:type schema:Book
78 Nd849d449d2f94ef2b91e2c83ec11479e schema:familyName La Pointe
79 schema:givenName Paul R.
80 rdf:type schema:Person
81 Nd9a196d2159e48cfafd3f098ee7019f4 rdf:first sg:person.01142172076.47
82 rdf:rest rdf:nil
83 Nf8fbfd436d514003aab947964702cd4c schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nfa0f651124e7488daab6309e1d788bc1 schema:familyName Barton
86 schema:givenName Christopher C.
87 rdf:type schema:Person
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
95 schema:familyName Bak
96 schema:givenName P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
98 rdf:type schema:Person
99 sg:person.01142172076.47 schema:affiliation grid-institutes:grid.202665.5
100 schema:familyName Chen
101 schema:givenName K.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142172076.47
103 rdf:type schema:Person
104 grid-institutes:grid.202665.5 schema:alternateName Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
105 schema:name Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...