A Mathematical Study of Information Transmission in Quantum Communication Processes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Masanori Ohya , Noboru Watanabe

ABSTRACT

In quantum communication theory, an input signal is represented by the quantum state. The input state changes under the influence of noise and loss associated with a channel. The attenuation process is a model of quantum channel describing an optical communication process. When an input state changes to an output state through a channel, the amount of information carried from the input state to the output state is represented by the quantum mutual entropy (information). The quantum communication theory has been studied by various researchers [4–7,11,13,15,16,18].In §1, we briefly review a quantum channel for attenuation processes, and we explain a quantum entropy and a quantum mutual entropy in quantum communication systems in §2. By using the general framework defined in [16], we discuss the convergence (speed) of the mutual entropy and mean mutual entropy for attenuation process in §3. More... »

PAGES

371-378

Book

TITLE

Quantum Communications and Measurement

ISBN

978-1-4899-1393-7
978-1-4899-1391-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-1391-3_36

DOI

http://dx.doi.org/10.1007/978-1-4899-1391-3_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014785140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan", 
          "id": "http://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohya", 
        "givenName": "Masanori", 
        "id": "sg:person.013365420775.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan", 
          "id": "http://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Noboru", 
        "id": "sg:person.016675442701.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675442701.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "In quantum communication theory, an input signal is represented by the quantum state. The input state changes under the influence of noise and loss associated with a channel. The attenuation process is a model of quantum channel describing an optical communication process. When an input state changes to an output state through a channel, the amount of information carried from the input state to the output state is represented by the quantum mutual entropy (information). The quantum communication theory has been studied by various researchers [4\u20137,11,13,15,16,18].In \u00a71, we briefly review a quantum channel for attenuation processes, and we explain a quantum entropy and a quantum mutual entropy in quantum communication systems in \u00a72. By using the general framework defined in [16], we discuss the convergence (speed) of the mutual entropy and mean mutual entropy for attenuation process in \u00a73.", 
    "editor": [
      {
        "familyName": "Belavkin", 
        "givenName": "V. P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hirota", 
        "givenName": "O.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hudson", 
        "givenName": "R. L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-1391-3_36", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-1393-7", 
        "978-1-4899-1391-3"
      ], 
      "name": "Quantum Communications and Measurement", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum communication theory", 
      "quantum mutual entropy", 
      "mutual entropy", 
      "optical communication processes", 
      "quantum communication process", 
      "mathematical study", 
      "communication theory", 
      "influence of noise", 
      "quantum channel", 
      "input states", 
      "general framework", 
      "input signal", 
      "quantum states", 
      "entropy", 
      "quantum communication systems", 
      "output state", 
      "communication systems", 
      "theory", 
      "amount of information", 
      "convergence", 
      "information transmission", 
      "noise", 
      "framework", 
      "model", 
      "system", 
      "channels", 
      "state", 
      "communication process", 
      "process", 
      "signals", 
      "researchers", 
      "information", 
      "attenuation processes", 
      "transmission", 
      "influence", 
      "amount", 
      "study", 
      "loss"
    ], 
    "name": "A Mathematical Study of Information Transmission in Quantum Communication Processes", 
    "pagination": "371-378", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014785140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-1391-3_36"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-1391-3_36", 
      "https://app.dimensions.ai/details/publication/pub.1014785140"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_50.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-1391-3_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1391-3_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1391-3_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1391-3_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-1391-3_36'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-1391-3_36 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N4a4b0e7b30d545609d33687872bee111
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description In quantum communication theory, an input signal is represented by the quantum state. The input state changes under the influence of noise and loss associated with a channel. The attenuation process is a model of quantum channel describing an optical communication process. When an input state changes to an output state through a channel, the amount of information carried from the input state to the output state is represented by the quantum mutual entropy (information). The quantum communication theory has been studied by various researchers [4–7,11,13,15,16,18].In §1, we briefly review a quantum channel for attenuation processes, and we explain a quantum entropy and a quantum mutual entropy in quantum communication systems in §2. By using the general framework defined in [16], we discuss the convergence (speed) of the mutual entropy and mean mutual entropy for attenuation process in §3.
7 schema:editor N0aa96d88be8247209a5182eb257f11ba
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na6f4788005fa45918ef8553c1e836bea
12 schema:keywords amount
13 amount of information
14 attenuation processes
15 channels
16 communication process
17 communication systems
18 communication theory
19 convergence
20 entropy
21 framework
22 general framework
23 influence
24 influence of noise
25 information
26 information transmission
27 input signal
28 input states
29 loss
30 mathematical study
31 model
32 mutual entropy
33 noise
34 optical communication processes
35 output state
36 process
37 quantum channel
38 quantum communication process
39 quantum communication systems
40 quantum communication theory
41 quantum mutual entropy
42 quantum states
43 researchers
44 signals
45 state
46 study
47 system
48 theory
49 transmission
50 schema:name A Mathematical Study of Information Transmission in Quantum Communication Processes
51 schema:pagination 371-378
52 schema:productId N3ad7d9bcac534f03b726e16c6f43367a
53 N978643dc2c1c421b842530d4e089ae03
54 schema:publisher N014ee6abd28f4f028b7f47bde42196ab
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014785140
56 https://doi.org/10.1007/978-1-4899-1391-3_36
57 schema:sdDatePublished 2021-12-01T20:12
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N7436864df10e472c8b6004fb45afc27b
60 schema:url https://doi.org/10.1007/978-1-4899-1391-3_36
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N00b9ac95482948dab31dacc8f5b0452d rdf:first sg:person.016675442701.54
65 rdf:rest rdf:nil
66 N014ee6abd28f4f028b7f47bde42196ab schema:name Springer Nature
67 rdf:type schema:Organisation
68 N0aa96d88be8247209a5182eb257f11ba rdf:first Nfb0a42275b364d8480d239ea40b3c82a
69 rdf:rest Nb3e3f878f7254cbbb49c7371bebe72cb
70 N3ad7d9bcac534f03b726e16c6f43367a schema:name doi
71 schema:value 10.1007/978-1-4899-1391-3_36
72 rdf:type schema:PropertyValue
73 N46a7aef7fac14c1fb163e3c49c06f0f1 schema:familyName Hirota
74 schema:givenName O.
75 rdf:type schema:Person
76 N4a4b0e7b30d545609d33687872bee111 rdf:first sg:person.013365420775.41
77 rdf:rest N00b9ac95482948dab31dacc8f5b0452d
78 N7436864df10e472c8b6004fb45afc27b schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N7a20471a323c47dda2f1cf0ae548eecf rdf:first N7f5ccd9d6f2e4180a9ca7144bc539b4d
81 rdf:rest rdf:nil
82 N7f5ccd9d6f2e4180a9ca7144bc539b4d schema:familyName Hudson
83 schema:givenName R. L.
84 rdf:type schema:Person
85 N978643dc2c1c421b842530d4e089ae03 schema:name dimensions_id
86 schema:value pub.1014785140
87 rdf:type schema:PropertyValue
88 Na6f4788005fa45918ef8553c1e836bea schema:isbn 978-1-4899-1391-3
89 978-1-4899-1393-7
90 schema:name Quantum Communications and Measurement
91 rdf:type schema:Book
92 Nb3e3f878f7254cbbb49c7371bebe72cb rdf:first N46a7aef7fac14c1fb163e3c49c06f0f1
93 rdf:rest N7a20471a323c47dda2f1cf0ae548eecf
94 Nfb0a42275b364d8480d239ea40b3c82a schema:familyName Belavkin
95 schema:givenName V. P.
96 rdf:type schema:Person
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
101 schema:name Quantum Physics
102 rdf:type schema:DefinedTerm
103 sg:person.013365420775.41 schema:affiliation grid-institutes:grid.143643.7
104 schema:familyName Ohya
105 schema:givenName Masanori
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
107 rdf:type schema:Person
108 sg:person.016675442701.54 schema:affiliation grid-institutes:grid.143643.7
109 schema:familyName Watanabe
110 schema:givenName Noboru
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675442701.54
112 rdf:type schema:Person
113 grid-institutes:grid.143643.7 schema:alternateName Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan
114 schema:name Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...