Gibbsian Check of the Validity of Gibbsian Calculation through Dynamical Observables View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Dominique F. Escande , Holger Kantz , Roberto Livi , Stefano Ruffo

ABSTRACT

A key question in statistical physics is the agreement between time and ensemble averages. Moreover, in many applications (e.g. molecular dynamics1), one needs a fast relaxation in time with a limited number of degrees of freedom. The theory of dynamical systems tells us that this happens if chaos is strong, i.e. a generic orbit fills most of the available phase space in a short time. The conditions for this to happen are difficult to establish in high dimension. In this contribution we address this question in the context of Hamiltonian dynamics, choosing a specific coupled rotators model on a 1-D lattice2. We develop simple ensemble calculations of dynamical chaos indicators, which enable us to identify the energy region where the desired fast relaxation takes place. More... »

PAGES

131-138

References to SciGraph publications

Book

TITLE

Hamiltonian Mechanics

ISBN

978-1-4899-0966-4
978-1-4899-0964-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-0964-0_10

DOI

http://dx.doi.org/10.1007/978-1-4899-0964-0_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008191150


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Equipe Turbulence Plasma, Institut M\u00e9diterran\u00e9en de Technologie, Technop\u00f4le de Ch\u00e2teau Gombert, F-13451\u00a0Marseille Cedex 13, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escande", 
        "givenName": "Dominique F.", 
        "id": "sg:person.01243642262.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Fachbereich Physik, Bergische Universit\u00e4t \u2014 Gesamthochschule Wuppertal, Gauss Strasse 20, D-42097\u00a0Wuppertal 1, Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kantz", 
        "givenName": "Holger", 
        "id": "sg:person.0671621336.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671621336.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e1 di Firenze, Largo E. Fermi 2, I-50125\u00a0Firenze, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Energetica, Universit\u00e1 di Firenze, Via S. Marta 3, I-50100\u00a0Firenze, Italia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruffo", 
        "givenName": "Stefano", 
        "id": "sg:person.01365701241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012541626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012541626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012658600", 
          "https://doi.org/10.1007/bf01019687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02723540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238174", 
          "https://doi.org/10.1007/bf02723540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02723539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151468", 
          "https://doi.org/10.1007/bf02723539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "A key question in statistical physics is the agreement between time and ensemble averages. Moreover, in many applications (e.g. molecular dynamics1), one needs a fast relaxation in time with a limited number of degrees of freedom. The theory of dynamical systems tells us that this happens if chaos is strong, i.e. a generic orbit fills most of the available phase space in a short time. The conditions for this to happen are difficult to establish in high dimension. In this contribution we address this question in the context of Hamiltonian dynamics, choosing a specific coupled rotators model on a 1-D lattice2. We develop simple ensemble calculations of dynamical chaos indicators, which enable us to identify the energy region where the desired fast relaxation takes place.", 
    "editor": [
      {
        "familyName": "Seimenis", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-0964-0_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-0966-4", 
        "978-1-4899-0964-0"
      ], 
      "name": "Hamiltonian Mechanics", 
      "type": "Book"
    }, 
    "name": "Gibbsian Check of the Validity of Gibbsian Calculation through Dynamical Observables", 
    "pagination": "131-138", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-0964-0_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2706573fc4fd5e4060eec5b8a272a6db83b4511717566d0b6a61520c1ea5a272"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008191150"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-0964-0_10", 
      "https://app.dimensions.ai/details/publication/pub.1008191150"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000248.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4899-0964-0_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0964-0_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0964-0_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0964-0_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0964-0_10'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-0964-0_10 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N91f93f2e2c704e4b811a09141305d969
4 schema:citation sg:pub.10.1007/bf01019687
5 sg:pub.10.1007/bf02723539
6 sg:pub.10.1007/bf02723540
7 https://doi.org/10.1016/0370-1573(79)90023-1
8 https://doi.org/10.1016/0370-1573(85)90019-5
9 https://doi.org/10.1103/physrev.153.250
10 schema:datePublished 1994
11 schema:datePublishedReg 1994-01-01
12 schema:description A key question in statistical physics is the agreement between time and ensemble averages. Moreover, in many applications (e.g. molecular dynamics1), one needs a fast relaxation in time with a limited number of degrees of freedom. The theory of dynamical systems tells us that this happens if chaos is strong, i.e. a generic orbit fills most of the available phase space in a short time. The conditions for this to happen are difficult to establish in high dimension. In this contribution we address this question in the context of Hamiltonian dynamics, choosing a specific coupled rotators model on a 1-D lattice2. We develop simple ensemble calculations of dynamical chaos indicators, which enable us to identify the energy region where the desired fast relaxation takes place.
13 schema:editor N1041bef744e2461093d747c2cd4d0aff
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Naa1d5af9694246258ba531c12dbcd993
18 schema:name Gibbsian Check of the Validity of Gibbsian Calculation through Dynamical Observables
19 schema:pagination 131-138
20 schema:productId N02d32cfde6304f18acfe479e102ec2a7
21 N3f00cc7e0fea48d68cddb3130dbbbe5c
22 N7b2982e461b748c5bb302261e89bc86d
23 schema:publisher N37ab388e651447539ad777421443024b
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191150
25 https://doi.org/10.1007/978-1-4899-0964-0_10
26 schema:sdDatePublished 2019-04-15T12:29
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N3d6bcb12e54c46b88ddc02105cfde65d
29 schema:url http://link.springer.com/10.1007/978-1-4899-0964-0_10
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N02d32cfde6304f18acfe479e102ec2a7 schema:name doi
34 schema:value 10.1007/978-1-4899-0964-0_10
35 rdf:type schema:PropertyValue
36 N1041bef744e2461093d747c2cd4d0aff rdf:first N1c4f4126a70a4e74af4a2e0ce05eb9cf
37 rdf:rest rdf:nil
38 N1117b33bf6624ee4bc00b6d8385102a9 schema:name Equipe Turbulence Plasma, Institut Méditerranéen de Technologie, Technopôle de Château Gombert, F-13451 Marseille Cedex 13, France
39 rdf:type schema:Organization
40 N1c4f4126a70a4e74af4a2e0ce05eb9cf schema:familyName Seimenis
41 schema:givenName John
42 rdf:type schema:Person
43 N37ab388e651447539ad777421443024b schema:location Boston, MA
44 schema:name Springer US
45 rdf:type schema:Organisation
46 N3d6bcb12e54c46b88ddc02105cfde65d schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N3f00cc7e0fea48d68cddb3130dbbbe5c schema:name readcube_id
49 schema:value 2706573fc4fd5e4060eec5b8a272a6db83b4511717566d0b6a61520c1ea5a272
50 rdf:type schema:PropertyValue
51 N45e94ba88b4949ef91263cd16427fcf4 rdf:first sg:person.0772676522.84
52 rdf:rest N6d52f71a01784964afaab705bad69ab8
53 N6d52f71a01784964afaab705bad69ab8 rdf:first sg:person.01365701241.87
54 rdf:rest rdf:nil
55 N7b2982e461b748c5bb302261e89bc86d schema:name dimensions_id
56 schema:value pub.1008191150
57 rdf:type schema:PropertyValue
58 N91f93f2e2c704e4b811a09141305d969 rdf:first sg:person.01243642262.71
59 rdf:rest N9c24e70757364f2188f963cb5045b766
60 N9c24e70757364f2188f963cb5045b766 rdf:first sg:person.0671621336.20
61 rdf:rest N45e94ba88b4949ef91263cd16427fcf4
62 Naa1d5af9694246258ba531c12dbcd993 schema:isbn 978-1-4899-0964-0
63 978-1-4899-0966-4
64 schema:name Hamiltonian Mechanics
65 rdf:type schema:Book
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.01243642262.71 schema:affiliation N1117b33bf6624ee4bc00b6d8385102a9
73 schema:familyName Escande
74 schema:givenName Dominique F.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71
76 rdf:type schema:Person
77 sg:person.01365701241.87 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
78 schema:familyName Ruffo
79 schema:givenName Stefano
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
81 rdf:type schema:Person
82 sg:person.0671621336.20 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
83 schema:familyName Kantz
84 schema:givenName Holger
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671621336.20
86 rdf:type schema:Person
87 sg:person.0772676522.84 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
88 schema:familyName Livi
89 schema:givenName Roberto
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
91 rdf:type schema:Person
92 sg:pub.10.1007/bf01019687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
93 https://doi.org/10.1007/bf01019687
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02723539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151468
96 https://doi.org/10.1007/bf02723539
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02723540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238174
99 https://doi.org/10.1007/bf02723540
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0370-1573(79)90023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014649535
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0370-1573(85)90019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012541626
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrev.153.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434430
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
108 schema:name Fachbereich Physik, Bergische Universität — Gesamthochschule Wuppertal, Gauss Strasse 20, D-42097 Wuppertal 1, Deutschland
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
111 schema:name Dipartimento di Energetica, Universitá di Firenze, Via S. Marta 3, I-50100 Firenze, Italia
112 Dipartimento di Fisica, Universitá di Firenze, Largo E. Fermi 2, I-50125 Firenze, Italia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...