Shape Representation and Recovery Using Deformable Superquadrics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Dimitri Metaxas , Demetri Terzopoulos

ABSTRACT

Recovering the shapes and motions of 3D objects from visual data is a primary goal of low and intermediate level vision. Despite the large body of work on 3D shape modeling and motion extraction, most existing techniques deal with simple shape primitives and rigid motion. Many natural objects, however, have shapes which cannot be described accurately in terms of simple shape primitives and their motions are often nonrigid. To deal with such complex motions, we need 3D models with broad geometric coverage and associated techniques for inferring 3D shape and nonrigid motion from noise-corrupted data. More... »

PAGES

389-398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4899-0715-8_38

DOI

http://dx.doi.org/10.1007/978-1-4899-0715-8_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036973715


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metaxas", 
        "givenName": "Dimitri", 
        "id": "sg:person.016117507535.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117507535.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research, Canada", 
          "id": "http://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada", 
            "Schlumberger Laboratory for Computer Science, P.O. Box 200015, 78720, Austin, TX, USA", 
            "Canadian Institute for Advanced Research, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "Recovering the shapes and motions of 3D objects from visual data is a primary goal of low and intermediate level vision. Despite the large body of work on 3D shape modeling and motion extraction, most existing techniques deal with simple shape primitives and rigid motion. Many natural objects, however, have shapes which cannot be described accurately in terms of simple shape primitives and their motions are often nonrigid. To deal with such complex motions, we need 3D models with broad geometric coverage and associated techniques for inferring 3D shape and nonrigid motion from noise-corrupted data.", 
    "editor": [
      {
        "familyName": "Arcelli", 
        "givenName": "Carlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Cordella", 
        "givenName": "Luigi P.", 
        "type": "Person"
      }, 
      {
        "familyName": "di Baja", 
        "givenName": "Gabriella Sanniti", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4899-0715-8_38", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4899-0717-2", 
        "978-1-4899-0715-8"
      ], 
      "name": "Visual Form", 
      "type": "Book"
    }, 
    "keywords": [
      "simple shape primitives", 
      "shape primitives", 
      "intermediate-level vision", 
      "visual data", 
      "motion extraction", 
      "level vision", 
      "deformable superquadrics", 
      "shape modeling", 
      "such complex motions", 
      "noise-corrupted data", 
      "shape representation", 
      "nonrigid motion", 
      "primitives", 
      "complex motion", 
      "rigid motion", 
      "geometric coverage", 
      "objects", 
      "natural objects", 
      "superquadrics", 
      "primary goal", 
      "vision", 
      "technique", 
      "representation", 
      "extraction", 
      "motion", 
      "data", 
      "modeling", 
      "goal", 
      "large body", 
      "work", 
      "model", 
      "coverage", 
      "shape", 
      "terms", 
      "body", 
      "recovery", 
      "broad geometric coverage"
    ], 
    "name": "Shape Representation and Recovery Using Deformable Superquadrics", 
    "pagination": "389-398", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036973715"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4899-0715-8_38"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4899-0715-8_38", 
      "https://app.dimensions.ai/details/publication/pub.1036973715"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_153.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4899-0715-8_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0715-8_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0715-8_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0715-8_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4899-0715-8_38'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4899-0715-8_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb56ce3ca50b8454fb2e2d4d4715bc8f2
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description Recovering the shapes and motions of 3D objects from visual data is a primary goal of low and intermediate level vision. Despite the large body of work on 3D shape modeling and motion extraction, most existing techniques deal with simple shape primitives and rigid motion. Many natural objects, however, have shapes which cannot be described accurately in terms of simple shape primitives and their motions are often nonrigid. To deal with such complex motions, we need 3D models with broad geometric coverage and associated techniques for inferring 3D shape and nonrigid motion from noise-corrupted data.
7 schema:editor N5467b67aa2c648baab2e28b6c6eb8a5b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5af21fc73e394104bb2ef2b6b916db5e
12 schema:keywords body
13 broad geometric coverage
14 complex motion
15 coverage
16 data
17 deformable superquadrics
18 extraction
19 geometric coverage
20 goal
21 intermediate-level vision
22 large body
23 level vision
24 model
25 modeling
26 motion
27 motion extraction
28 natural objects
29 noise-corrupted data
30 nonrigid motion
31 objects
32 primary goal
33 primitives
34 recovery
35 representation
36 rigid motion
37 shape
38 shape modeling
39 shape primitives
40 shape representation
41 simple shape primitives
42 such complex motions
43 superquadrics
44 technique
45 terms
46 vision
47 visual data
48 work
49 schema:name Shape Representation and Recovery Using Deformable Superquadrics
50 schema:pagination 389-398
51 schema:productId N35add5b7e8f24eed94e3cbafe172a60c
52 Na9308d17f2824e22bceb698b8275fdce
53 schema:publisher N903a1b96849b48e9a1d8923f1f4eacdd
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036973715
55 https://doi.org/10.1007/978-1-4899-0715-8_38
56 schema:sdDatePublished 2022-01-01T19:09
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N0b40e8c176cd492da2f35d8dccfebc1f
59 schema:url https://doi.org/10.1007/978-1-4899-0715-8_38
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N0b40e8c176cd492da2f35d8dccfebc1f schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N35add5b7e8f24eed94e3cbafe172a60c schema:name dimensions_id
66 schema:value pub.1036973715
67 rdf:type schema:PropertyValue
68 N37e92fe152e340858701380aaab633c4 rdf:first sg:person.016347323445.35
69 rdf:rest rdf:nil
70 N5467b67aa2c648baab2e28b6c6eb8a5b rdf:first N5fb1bfb56eb34e189813ec2ae1029225
71 rdf:rest Nb0c193d1c0b64c249cc994cbeb88c62d
72 N5af21fc73e394104bb2ef2b6b916db5e schema:isbn 978-1-4899-0715-8
73 978-1-4899-0717-2
74 schema:name Visual Form
75 rdf:type schema:Book
76 N5fb1bfb56eb34e189813ec2ae1029225 schema:familyName Arcelli
77 schema:givenName Carlo
78 rdf:type schema:Person
79 N84ac4275bed04abd9daba7a0ac127906 schema:familyName Cordella
80 schema:givenName Luigi P.
81 rdf:type schema:Person
82 N89f38925f553494a92b4ec1f947dfc02 schema:familyName di Baja
83 schema:givenName Gabriella Sanniti
84 rdf:type schema:Person
85 N903a1b96849b48e9a1d8923f1f4eacdd schema:name Springer Nature
86 rdf:type schema:Organisation
87 Na9308d17f2824e22bceb698b8275fdce schema:name doi
88 schema:value 10.1007/978-1-4899-0715-8_38
89 rdf:type schema:PropertyValue
90 Nb0c193d1c0b64c249cc994cbeb88c62d rdf:first N84ac4275bed04abd9daba7a0ac127906
91 rdf:rest Nc2d3bf6d924a40b68f780acd2e83f099
92 Nb56ce3ca50b8454fb2e2d4d4715bc8f2 rdf:first sg:person.016117507535.13
93 rdf:rest N37e92fe152e340858701380aaab633c4
94 Nc2d3bf6d924a40b68f780acd2e83f099 rdf:first N89f38925f553494a92b4ec1f947dfc02
95 rdf:rest rdf:nil
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:person.016117507535.13 schema:affiliation grid-institutes:grid.17063.33
103 schema:familyName Metaxas
104 schema:givenName Dimitri
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117507535.13
106 rdf:type schema:Person
107 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.440050.5
108 schema:familyName Terzopoulos
109 schema:givenName Demetri
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
111 rdf:type schema:Person
112 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada
113 schema:name Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada
114 rdf:type schema:Organization
115 grid-institutes:grid.440050.5 schema:alternateName Canadian Institute for Advanced Research, Canada
116 schema:name Canadian Institute for Advanced Research, Canada
117 Department of Computer Science, University of Toronto, M5S 1A4, Toronto, ON, Canada
118 Schlumberger Laboratory for Computer Science, P.O. Box 200015, 78720, Austin, TX, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...