Building, Tuning, and Deploying Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Dipanjan Sarkar , Raghav Bali , Tushar Sharma

ABSTRACT

A very popular saying in the Machine Learning community is "70% of Machine Learning is data processing" and going by the structure of this book, the quote seems quite apt. In the preceding chapters, you saw how you can extract, process, and transform data to convert it to a form suitable for learning using Machine Learning algorithms. This chapter deals with the most important part of using that processed data, to learn a model that you can then use to solve real-world problems. You also learned about the CRISP-DM methodology for developing data solutions and projects—the step involving building and tuning these models is the final step in the iterative cycle of Machine Learning. More... »

PAGES

255-304

Book

TITLE

Practical Machine Learning with Python

ISBN

978-1-4842-3206-4
978-1-4842-3207-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4842-3207-1_5

DOI

http://dx.doi.org/10.1007/978-1-4842-3207-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099909887


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Intel Technology India Pvt Ltd Embassy Paragon, Site No. 6/2 & 6/3"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkar", 
        "givenName": "Dipanjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Bali", 
        "givenName": "Raghav", 
        "type": "Person"
      }, 
      {
        "familyName": "Sharma", 
        "givenName": "Tushar", 
        "type": "Person"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "A very popular saying in the Machine Learning community is \"70% of Machine Learning is data processing\" and going by the structure of this book, the quote seems quite apt. In the preceding chapters, you saw how you can extract, process, and transform data to convert it to a form suitable for learning using Machine Learning algorithms. This chapter deals with the most important part of using that processed data, to learn a model that you can then use to solve real-world problems. You also learned about the CRISP-DM methodology for developing data solutions and projects\u2014the step involving building and tuning these models is the final step in the iterative cycle of Machine Learning.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4842-3207-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4842-3206-4", 
        "978-1-4842-3207-1"
      ], 
      "name": "Practical Machine Learning with Python", 
      "type": "Book"
    }, 
    "name": "Building, Tuning, and Deploying Models", 
    "pagination": "255-304", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4842-3207-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d585d6debd305fa1885d8bd5f878a73cd90794e20a4ccca7e44b321c81374d5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099909887"
        ]
      }
    ], 
    "publisher": {
      "location": "Berkeley, CA", 
      "name": "Apress", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4842-3207-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1099909887"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000235.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4842-3207-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-3207-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-3207-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-3207-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-3207-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4842-3207-1_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndf0db20701c54be08c9364ac3d7d459c
4 schema:datePublished 2018
5 schema:datePublishedReg 2018-01-01
6 schema:description A very popular saying in the Machine Learning community is "70% of Machine Learning is data processing" and going by the structure of this book, the quote seems quite apt. In the preceding chapters, you saw how you can extract, process, and transform data to convert it to a form suitable for learning using Machine Learning algorithms. This chapter deals with the most important part of using that processed data, to learn a model that you can then use to solve real-world problems. You also learned about the CRISP-DM methodology for developing data solutions and projects—the step involving building and tuning these models is the final step in the iterative cycle of Machine Learning.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N172a6387b1f54af3a4fb02f4668b171d
11 schema:name Building, Tuning, and Deploying Models
12 schema:pagination 255-304
13 schema:productId N5d8e75568dbc42408968dbc2230f8498
14 Ne5cdff92e176463a884008d5b4dfb7a8
15 Nf5c8b1a6d134473c84a3c2d644f66a43
16 schema:publisher N7002998a2dee4579b9bba80e111ef0a7
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099909887
18 https://doi.org/10.1007/978-1-4842-3207-1_5
19 schema:sdDatePublished 2019-04-15T22:52
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Ne93e7b631fe440008420e2aefb1dd596
22 schema:url http://link.springer.com/10.1007/978-1-4842-3207-1_5
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N0b3701a6f3654dcea643180ff998af40 schema:familyName Bali
27 schema:givenName Raghav
28 rdf:type schema:Person
29 N172a6387b1f54af3a4fb02f4668b171d schema:isbn 978-1-4842-3206-4
30 978-1-4842-3207-1
31 schema:name Practical Machine Learning with Python
32 rdf:type schema:Book
33 N5d8e75568dbc42408968dbc2230f8498 schema:name dimensions_id
34 schema:value pub.1099909887
35 rdf:type schema:PropertyValue
36 N7002998a2dee4579b9bba80e111ef0a7 schema:location Berkeley, CA
37 schema:name Apress
38 rdf:type schema:Organisation
39 Na2fb4424422e4c11a6141730fac1a07a schema:name Intel Technology India Pvt Ltd Embassy Paragon, Site No. 6/2 & 6/3
40 rdf:type schema:Organization
41 Nd073652a40b8483bb215e3d879912467 schema:familyName Sharma
42 schema:givenName Tushar
43 rdf:type schema:Person
44 Ndc19be518eda4c1c9ad147108c3243c6 rdf:first N0b3701a6f3654dcea643180ff998af40
45 rdf:rest Nfc543762d0db489c97a8fdf0ff76719f
46 Ndf0db20701c54be08c9364ac3d7d459c rdf:first Nec77428c86c94009b7ae36cb19d98636
47 rdf:rest Ndc19be518eda4c1c9ad147108c3243c6
48 Ne5cdff92e176463a884008d5b4dfb7a8 schema:name doi
49 schema:value 10.1007/978-1-4842-3207-1_5
50 rdf:type schema:PropertyValue
51 Ne93e7b631fe440008420e2aefb1dd596 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nec77428c86c94009b7ae36cb19d98636 schema:affiliation Na2fb4424422e4c11a6141730fac1a07a
54 schema:familyName Sarkar
55 schema:givenName Dipanjan
56 rdf:type schema:Person
57 Nf5c8b1a6d134473c84a3c2d644f66a43 schema:name readcube_id
58 schema:value 6d585d6debd305fa1885d8bd5f878a73cd90794e20a4ccca7e44b321c81374d5
59 rdf:type schema:PropertyValue
60 Nfc543762d0db489c97a8fdf0ff76719f rdf:first Nd073652a40b8483bb215e3d879912467
61 rdf:rest rdf:nil
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...