The History of Autonomous Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Michael Paluszek , Stephanie Thomas

ABSTRACT

In the previous chapter you were introduced to autonomous learning. You saw that autonomous learning could be divided into the areas of machine learning, controls, and artificial intelligence (AI). In this chapter you will learn how each area evolved. Automatic control predates AI. However, we are interested in adaptive or learning control, which is a relatively new development and really began evolving around the time that AI had its foundations. Machine learning is sometimes considered an offshoot of AI. However, many of the methods used in machine learning came from different fields of study such as statistics and optimization. More... »

PAGES

17-23

Book

TITLE

MATLAB Machine Learning

ISBN

978-1-4842-2249-2
978-1-4842-2250-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4842-2250-8_2

DOI

http://dx.doi.org/10.1007/978-1-4842-2250-8_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045261076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Paluszek", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Thomas", 
        "givenName": "Stephanie", 
        "type": "Person"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "In the previous chapter you were introduced to autonomous learning. You saw that autonomous learning could be divided into the areas of machine learning, controls, and artificial intelligence (AI). In this chapter you will learn how each area evolved. Automatic control predates AI. However, we are interested in adaptive or learning control, which is a relatively new development and really began evolving around the time that AI had its foundations. Machine learning is sometimes considered an offshoot of AI. However, many of the methods used in machine learning came from different fields of study such as statistics and optimization.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4842-2250-8_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4842-2249-2", 
        "978-1-4842-2250-8"
      ], 
      "name": "MATLAB Machine Learning", 
      "type": "Book"
    }, 
    "name": "The History of Autonomous Learning", 
    "pagination": "17-23", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4842-2250-8_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7985757ebc473823f0cd7e22b6a19f7e0d6a87843ea7514a15e437960a0c668"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045261076"
        ]
      }
    ], 
    "publisher": {
      "location": "Berkeley, CA", 
      "name": "Apress", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4842-2250-8_2", 
      "https://app.dimensions.ai/details/publication/pub.1045261076"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000078.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4842-2250-8_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-2250-8_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-2250-8_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-2250-8_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-2250-8_2'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4842-2250-8_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndbd3e17648c248fcad8cd52c9fae0021
4 schema:datePublished 2017
5 schema:datePublishedReg 2017-01-01
6 schema:description In the previous chapter you were introduced to autonomous learning. You saw that autonomous learning could be divided into the areas of machine learning, controls, and artificial intelligence (AI). In this chapter you will learn how each area evolved. Automatic control predates AI. However, we are interested in adaptive or learning control, which is a relatively new development and really began evolving around the time that AI had its foundations. Machine learning is sometimes considered an offshoot of AI. However, many of the methods used in machine learning came from different fields of study such as statistics and optimization.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne6d38e7761a64e3eb6ec3426c19eaa86
11 schema:name The History of Autonomous Learning
12 schema:pagination 17-23
13 schema:productId Nb51ce35fe2264b57be222a3c79fa9d44
14 Ncb5634613306440cb030437ca73a7a5a
15 Nfed0810e0d2b4c62bcd0c3ae585c5f89
16 schema:publisher N5e5e5ae00bcd407fb54525db027cfd6c
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045261076
18 https://doi.org/10.1007/978-1-4842-2250-8_2
19 schema:sdDatePublished 2019-04-15T10:22
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N478f5dca6cda44b78e110a5729b3aefb
22 schema:url http://link.springer.com/10.1007/978-1-4842-2250-8_2
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N478f5dca6cda44b78e110a5729b3aefb schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N5e5e5ae00bcd407fb54525db027cfd6c schema:location Berkeley, CA
29 schema:name Apress
30 rdf:type schema:Organisation
31 Na03633ab7a9b43cda0b104f1bdce8844 schema:familyName Thomas
32 schema:givenName Stephanie
33 rdf:type schema:Person
34 Nb51ce35fe2264b57be222a3c79fa9d44 schema:name doi
35 schema:value 10.1007/978-1-4842-2250-8_2
36 rdf:type schema:PropertyValue
37 Nbb034b84607646de9372c2d4d7b12d21 rdf:first Na03633ab7a9b43cda0b104f1bdce8844
38 rdf:rest rdf:nil
39 Ncb5634613306440cb030437ca73a7a5a schema:name readcube_id
40 schema:value d7985757ebc473823f0cd7e22b6a19f7e0d6a87843ea7514a15e437960a0c668
41 rdf:type schema:PropertyValue
42 Ndbd3e17648c248fcad8cd52c9fae0021 rdf:first Nef983a9333814b39937e17636f577f57
43 rdf:rest Nbb034b84607646de9372c2d4d7b12d21
44 Ne6d38e7761a64e3eb6ec3426c19eaa86 schema:isbn 978-1-4842-2249-2
45 978-1-4842-2250-8
46 schema:name MATLAB Machine Learning
47 rdf:type schema:Book
48 Nef983a9333814b39937e17636f577f57 schema:familyName Paluszek
49 schema:givenName Michael
50 rdf:type schema:Person
51 Nfed0810e0d2b4c62bcd0c3ae585c5f89 schema:name dimensions_id
52 schema:value pub.1045261076
53 rdf:type schema:PropertyValue
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...