Integration with R View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Roger Barga , Valentine Fontama , Wee Hyong Tok

ABSTRACT

This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio). More... »

PAGES

81-101

Book

TITLE

Predictive Analytics with Microsoft Azure Machine Learning

ISBN

978-1-4842-1201-1
978-1-4842-1200-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_4

DOI

http://dx.doi.org/10.1007/978-1-4842-1200-4_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001597009


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Barga", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "familyName": "Fontama", 
        "givenName": "Valentine", 
        "type": "Person"
      }, 
      {
        "familyName": "Tok", 
        "givenName": "Wee Hyong", 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4842-1200-4_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4842-1201-1", 
        "978-1-4842-1200-4"
      ], 
      "name": "Predictive Analytics with Microsoft Azure Machine Learning", 
      "type": "Book"
    }, 
    "name": "Integration with R", 
    "pagination": "81-101", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4842-1200-4_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "079b8d72c9b6429c0d4ce65886c15d27fd6bc94fcdd70213af3c503611ea947e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001597009"
        ]
      }
    ], 
    "publisher": {
      "location": "Berkeley, CA", 
      "name": "Apress", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4842-1200-4_4", 
      "https://app.dimensions.ai/details/publication/pub.1001597009"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000002.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4842-1200-4_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_4'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4842-1200-4_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N633030c7c1eb434188846edf898adb83
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio).
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7cd59d047cf6417cb782b6e01eccd66d
11 schema:name Integration with R
12 schema:pagination 81-101
13 schema:productId Na90a2065b6ea4cc9906c660cb79f2ed0
14 Nb6d2f33ff34d419299f2c606b661a5f8
15 Nf853585c07da47379888c9c7b91ba175
16 schema:publisher N53ad30ef4845438292b88182d57f1722
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001597009
18 https://doi.org/10.1007/978-1-4842-1200-4_4
19 schema:sdDatePublished 2019-04-16T00:32
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N36d58160640a44798e10dbdd693c1dfe
22 schema:url http://link.springer.com/10.1007/978-1-4842-1200-4_4
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N36d58160640a44798e10dbdd693c1dfe schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N53ad30ef4845438292b88182d57f1722 schema:location Berkeley, CA
29 schema:name Apress
30 rdf:type schema:Organisation
31 N633030c7c1eb434188846edf898adb83 rdf:first Nf0891ec3cf034041b383a9bde227f4ba
32 rdf:rest N95d97fec9a9141fa985bf58e1eac5408
33 N7cd59d047cf6417cb782b6e01eccd66d schema:isbn 978-1-4842-1200-4
34 978-1-4842-1201-1
35 schema:name Predictive Analytics with Microsoft Azure Machine Learning
36 rdf:type schema:Book
37 N95d97fec9a9141fa985bf58e1eac5408 rdf:first Ne335deccf65f499bb0c9ecb108c851a2
38 rdf:rest Nc40e70eed7024f18b1ee22465e228847
39 Na90a2065b6ea4cc9906c660cb79f2ed0 schema:name doi
40 schema:value 10.1007/978-1-4842-1200-4_4
41 rdf:type schema:PropertyValue
42 Nb6d2f33ff34d419299f2c606b661a5f8 schema:name dimensions_id
43 schema:value pub.1001597009
44 rdf:type schema:PropertyValue
45 Nc40e70eed7024f18b1ee22465e228847 rdf:first Nc7d38a4893d345d88fc07121a50867c3
46 rdf:rest rdf:nil
47 Nc7d38a4893d345d88fc07121a50867c3 schema:familyName Tok
48 schema:givenName Wee Hyong
49 rdf:type schema:Person
50 Ne335deccf65f499bb0c9ecb108c851a2 schema:familyName Fontama
51 schema:givenName Valentine
52 rdf:type schema:Person
53 Nf0891ec3cf034041b383a9bde227f4ba schema:familyName Barga
54 schema:givenName Roger
55 rdf:type schema:Person
56 Nf853585c07da47379888c9c7b91ba175 schema:name readcube_id
57 schema:value 079b8d72c9b6429c0d4ce65886c15d27fd6bc94fcdd70213af3c503611ea947e
58 rdf:type schema:PropertyValue
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...