Introducing Microsoft Azure Machine Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Roger Barga , Valentine Fontama , Wee Hyong Tok

ABSTRACT

Azure Machine Learning empowers data scientists and developers to transform data into insights using predictive analytics. By making it easier for developers to use the predictive models in end-to-end solutions, Azure Machine Learning enables actionable insights to be gleaned and operationalized easily.

PAGES

21-43

Book

TITLE

Predictive Analytics with Microsoft Azure Machine Learning

ISBN

978-1-4842-1201-1
978-1-4842-1200-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_2

DOI

http://dx.doi.org/10.1007/978-1-4842-1200-4_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009358028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Barga", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "familyName": "Fontama", 
        "givenName": "Valentine", 
        "type": "Person"
      }, 
      {
        "familyName": "Tok", 
        "givenName": "Wee Hyong", 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Azure Machine Learning empowers data scientists and developers to transform data into insights using predictive analytics. By making it easier for developers to use the predictive models in end-to-end solutions, Azure Machine Learning enables actionable insights to be gleaned and operationalized easily.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4842-1200-4_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4842-1201-1", 
        "978-1-4842-1200-4"
      ], 
      "name": "Predictive Analytics with Microsoft Azure Machine Learning", 
      "type": "Book"
    }, 
    "name": "Introducing Microsoft Azure Machine Learning", 
    "pagination": "21-43", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4842-1200-4_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c94383b567e2c903a3ac6100919574ef690c95eb6210696df54ebf89e527a38"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009358028"
        ]
      }
    ], 
    "publisher": {
      "location": "Berkeley, CA", 
      "name": "Apress", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4842-1200-4_2", 
      "https://app.dimensions.ai/details/publication/pub.1009358028"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000016.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4842-1200-4_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-1200-4_2'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4842-1200-4_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N73c5008227e5494c8bedf6b11e61e2bc
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Azure Machine Learning empowers data scientists and developers to transform data into insights using predictive analytics. By making it easier for developers to use the predictive models in end-to-end solutions, Azure Machine Learning enables actionable insights to be gleaned and operationalized easily.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ncfc8807fec024b4ca98a4d7292a241d2
11 schema:name Introducing Microsoft Azure Machine Learning
12 schema:pagination 21-43
13 schema:productId N1d6cd9a6740b438980dc19302cd8e006
14 N43b2f3f4b90747c78efbf591c2b27ca4
15 N7b9782b646d94980a40d17cd42d1a819
16 schema:publisher Nffcbe116fc05412b98ac22522864992a
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009358028
18 https://doi.org/10.1007/978-1-4842-1200-4_2
19 schema:sdDatePublished 2019-04-15T14:09
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Ncc33d487f00b4ac984d5f3827bfc7306
22 schema:url http://link.springer.com/10.1007/978-1-4842-1200-4_2
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N1d6cd9a6740b438980dc19302cd8e006 schema:name dimensions_id
27 schema:value pub.1009358028
28 rdf:type schema:PropertyValue
29 N310b3bcd1b1b4a1e8e4de9f0c98ddc8d schema:familyName Barga
30 schema:givenName Roger
31 rdf:type schema:Person
32 N43b2f3f4b90747c78efbf591c2b27ca4 schema:name readcube_id
33 schema:value 2c94383b567e2c903a3ac6100919574ef690c95eb6210696df54ebf89e527a38
34 rdf:type schema:PropertyValue
35 N45f36e62b3ad482a9d491560f1998f5f schema:familyName Tok
36 schema:givenName Wee Hyong
37 rdf:type schema:Person
38 N47f8b4c1cf1a43a4805881a7693dc70d rdf:first Nd91104a60ba645f189b69b77d2b6bb90
39 rdf:rest Nbe4e23ec35174f4498bd0500eca5694f
40 N73c5008227e5494c8bedf6b11e61e2bc rdf:first N310b3bcd1b1b4a1e8e4de9f0c98ddc8d
41 rdf:rest N47f8b4c1cf1a43a4805881a7693dc70d
42 N7b9782b646d94980a40d17cd42d1a819 schema:name doi
43 schema:value 10.1007/978-1-4842-1200-4_2
44 rdf:type schema:PropertyValue
45 Nbe4e23ec35174f4498bd0500eca5694f rdf:first N45f36e62b3ad482a9d491560f1998f5f
46 rdf:rest rdf:nil
47 Ncc33d487f00b4ac984d5f3827bfc7306 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ncfc8807fec024b4ca98a4d7292a241d2 schema:isbn 978-1-4842-1200-4
50 978-1-4842-1201-1
51 schema:name Predictive Analytics with Microsoft Azure Machine Learning
52 rdf:type schema:Book
53 Nd91104a60ba645f189b69b77d2b6bb90 schema:familyName Fontama
54 schema:givenName Valentine
55 rdf:type schema:Person
56 Nffcbe116fc05412b98ac22522864992a schema:location Berkeley, CA
57 schema:name Apress
58 rdf:type schema:Organisation
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...