Integration with R View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Roger Barga , Valentine Fontama , Wee Hyong Tok

ABSTRACT

This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio). More... »

PAGES

43-64

Book

TITLE

Predictive Analytics with Microsoft Azure Machine Learning

ISBN

978-1-4842-0446-7
978-1-4842-0445-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4842-0445-0_3

DOI

http://dx.doi.org/10.1007/978-1-4842-0445-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004789394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "WA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barga", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "WA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontama", 
        "givenName": "Valentine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "WA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tok", 
        "givenName": "Wee Hyong", 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4842-0445-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4842-0446-7", 
        "978-1-4842-0445-0"
      ], 
      "name": "Predictive Analytics with Microsoft Azure Machine Learning", 
      "type": "Book"
    }, 
    "name": "Integration with R", 
    "pagination": "43-64", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4842-0445-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16d2301382c1dba73f4aa36207dec761f79454fae72afaf82923be0ab6ecad15"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004789394"
        ]
      }
    ], 
    "publisher": {
      "location": "Berkeley, CA", 
      "name": "Apress", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4842-0445-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1004789394"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000008.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4842-0445-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-0445-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-0445-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-0445-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4842-0445-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4842-0445-0_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0e1eaefd7a89450aab59ba0759b508a9
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description This chapter will introduce R and show how it is integrated with Microsoft Azure Machine Learning. Through simple examples, you will learn how to write and run your own R code when working with Azure Machine Learning. You will also learn the R packages supported by Azure Machine Learning, and how you can use them in the Azure Machine Learning Studio (ML Studio).
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nad543e13a21348698ac49d92b5e639fe
11 schema:name Integration with R
12 schema:pagination 43-64
13 schema:productId Nb23b5bc2fa124e4682c2d8ef60a7b3a0
14 Nbb2fcf56d5df41e99fcaa7e50812f06e
15 Neda637881c544a1ca90a3855fe3c8587
16 schema:publisher Ne94d35ee45934c6ba4d95751f78c9a17
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004789394
18 https://doi.org/10.1007/978-1-4842-0445-0_3
19 schema:sdDatePublished 2019-04-15T15:05
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nfc11d9da84bb499e851c2b05445be4b6
22 schema:url http://link.springer.com/10.1007/978-1-4842-0445-0_3
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N0e1eaefd7a89450aab59ba0759b508a9 rdf:first Nf5cf8bc163d34a7d94e848d8d70b4e45
27 rdf:rest Ne422214339df4c0fa2e865c2f679be4f
28 N117dab83988043ee9c0c1c5a1ae48d48 schema:name WA, US
29 rdf:type schema:Organization
30 N1bb17c8efc9847398252e04f03dbcbbe schema:affiliation N117dab83988043ee9c0c1c5a1ae48d48
31 schema:familyName Fontama
32 schema:givenName Valentine
33 rdf:type schema:Person
34 N6a1d724ea2c2478891f7990843ac7ef0 schema:name WA, US
35 rdf:type schema:Organization
36 N728c89b04e554e338837c718f40cdd7d schema:name WA, US
37 rdf:type schema:Organization
38 N848ffbd3ce59475c839eefaa0ca5655e rdf:first Nc6ffa31c1fb64dbda9c3b0f4f184ff37
39 rdf:rest rdf:nil
40 Nad543e13a21348698ac49d92b5e639fe schema:isbn 978-1-4842-0445-0
41 978-1-4842-0446-7
42 schema:name Predictive Analytics with Microsoft Azure Machine Learning
43 rdf:type schema:Book
44 Nb23b5bc2fa124e4682c2d8ef60a7b3a0 schema:name dimensions_id
45 schema:value pub.1004789394
46 rdf:type schema:PropertyValue
47 Nbb2fcf56d5df41e99fcaa7e50812f06e schema:name readcube_id
48 schema:value 16d2301382c1dba73f4aa36207dec761f79454fae72afaf82923be0ab6ecad15
49 rdf:type schema:PropertyValue
50 Nc6ffa31c1fb64dbda9c3b0f4f184ff37 schema:affiliation N728c89b04e554e338837c718f40cdd7d
51 schema:familyName Tok
52 schema:givenName Wee Hyong
53 rdf:type schema:Person
54 Ne422214339df4c0fa2e865c2f679be4f rdf:first N1bb17c8efc9847398252e04f03dbcbbe
55 rdf:rest N848ffbd3ce59475c839eefaa0ca5655e
56 Ne94d35ee45934c6ba4d95751f78c9a17 schema:location Berkeley, CA
57 schema:name Apress
58 rdf:type schema:Organisation
59 Neda637881c544a1ca90a3855fe3c8587 schema:name doi
60 schema:value 10.1007/978-1-4842-0445-0_3
61 rdf:type schema:PropertyValue
62 Nf5cf8bc163d34a7d94e848d8d70b4e45 schema:affiliation N6a1d724ea2c2478891f7990843ac7ef0
63 schema:familyName Barga
64 schema:givenName Roger
65 rdf:type schema:Person
66 Nfc11d9da84bb499e851c2b05445be4b6 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...