Modeling Visual Cortical Contrast Adaptation Effects View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

E. V. Todorov , A. G. Siapas , D. C. Somers , S. B. Nelson

ABSTRACT

We demonstrate model visual cortical circuits which exhibit robust contrast adaptation properties, consistent with physiological observations in V1. The adaptation mechanism we employ is activity-dependent synaptic depression at thalamocortical and local intra-cortical synapses. Model contrast response functions (CRF) shift so that cells remain maximally responsive to changes around the recent average stimulus contrast level. Hysteresis effects for both stimulus contrast and orientation are achieved; orientation hysteresis is weaker, and depends exclusively on intracortical adaptation. Following stimulation of the receptive field (RF) surround, RFs dynamically expand to “fill in” for the missing stimulation in the RF center; in our model this expansion results from adaptation of local inhibitory synapses, triggered by excitation from long range horizontal projections. All adaptation effects are achieved using the same synaptic depression mechanisms. More... »

PAGES

525-531

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_83

DOI

http://dx.doi.org/10.1007/978-1-4757-9800-5_83

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008847410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Todorov", 
        "givenName": "E. V.", 
        "id": "sg:person.016163772475.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163772475.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siapas", 
        "givenName": "A. G.", 
        "id": "sg:person.01026634731.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026634731.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somers", 
        "givenName": "D. C.", 
        "id": "sg:person.01146070413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology, Brandeis University, Waltham, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology, Brandeis University, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nelson", 
        "givenName": "S. B.", 
        "id": "sg:person.01114173452.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "We demonstrate model visual cortical circuits which exhibit robust contrast adaptation properties, consistent with physiological observations in V1. The adaptation mechanism we employ is activity-dependent synaptic depression at thalamocortical and local intra-cortical synapses. Model contrast response functions (CRF) shift so that cells remain maximally responsive to changes around the recent average stimulus contrast level. Hysteresis effects for both stimulus contrast and orientation are achieved; orientation hysteresis is weaker, and depends exclusively on intracortical adaptation. Following stimulation of the receptive field (RF) surround, RFs dynamically expand to \u201cfill in\u201d for the missing stimulation in the RF center; in our model this expansion results from adaptation of local inhibitory synapses, triggered by excitation from long range horizontal projections. All adaptation effects are achieved using the same synaptic depression mechanisms.", 
    "editor": [
      {
        "familyName": "Bower", 
        "givenName": "James M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-9800-5_83", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-9802-9", 
        "978-1-4757-9800-5"
      ], 
      "name": "Computational Neuroscience", 
      "type": "Book"
    }, 
    "keywords": [
      "contrast response functions", 
      "activity-dependent synaptic depression", 
      "long-range horizontal projections", 
      "receptive field surround", 
      "visual cortical circuits", 
      "stimulus contrast levels", 
      "inhibitory synapses", 
      "cortical circuits", 
      "synaptic depression", 
      "adaptation effects", 
      "RF center", 
      "stimulus contrast", 
      "synapses", 
      "stimulation", 
      "physiological observations", 
      "contrast levels", 
      "depression", 
      "effect", 
      "adaptation properties", 
      "V1", 
      "cells", 
      "mechanism", 
      "levels", 
      "surround", 
      "center", 
      "depression mechanism", 
      "contrast", 
      "adaptation", 
      "changes", 
      "function", 
      "adaptation mechanisms", 
      "projections", 
      "observations", 
      "model", 
      "expansion", 
      "horizontal projection", 
      "RF", 
      "circuit", 
      "properties", 
      "orientation", 
      "response function", 
      "excitation", 
      "hysteresis", 
      "hysteresis effect"
    ], 
    "name": "Modeling Visual Cortical Contrast Adaptation Effects", 
    "pagination": "525-531", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008847410"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-9800-5_83"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-9800-5_83", 
      "https://app.dimensions.ai/details/publication/pub.1008847410"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_220.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-9800-5_83"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_83'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_83'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_83'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_83'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-9800-5_83 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N1fb1a404b9c044a2a8fcb0cf657307c8
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description We demonstrate model visual cortical circuits which exhibit robust contrast adaptation properties, consistent with physiological observations in V1. The adaptation mechanism we employ is activity-dependent synaptic depression at thalamocortical and local intra-cortical synapses. Model contrast response functions (CRF) shift so that cells remain maximally responsive to changes around the recent average stimulus contrast level. Hysteresis effects for both stimulus contrast and orientation are achieved; orientation hysteresis is weaker, and depends exclusively on intracortical adaptation. Following stimulation of the receptive field (RF) surround, RFs dynamically expand to “fill in” for the missing stimulation in the RF center; in our model this expansion results from adaptation of local inhibitory synapses, triggered by excitation from long range horizontal projections. All adaptation effects are achieved using the same synaptic depression mechanisms.
7 schema:editor Nd9e374ed5db6441b8a04007a623b9496
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N26fb1c4528b740c0921f7a3442cb925e
11 schema:keywords RF
12 RF center
13 V1
14 activity-dependent synaptic depression
15 adaptation
16 adaptation effects
17 adaptation mechanisms
18 adaptation properties
19 cells
20 center
21 changes
22 circuit
23 contrast
24 contrast levels
25 contrast response functions
26 cortical circuits
27 depression
28 depression mechanism
29 effect
30 excitation
31 expansion
32 function
33 horizontal projection
34 hysteresis
35 hysteresis effect
36 inhibitory synapses
37 levels
38 long-range horizontal projections
39 mechanism
40 model
41 observations
42 orientation
43 physiological observations
44 projections
45 properties
46 receptive field surround
47 response function
48 stimulation
49 stimulus contrast
50 stimulus contrast levels
51 surround
52 synapses
53 synaptic depression
54 visual cortical circuits
55 schema:name Modeling Visual Cortical Contrast Adaptation Effects
56 schema:pagination 525-531
57 schema:productId N176c4afcdd5847539fae0e0d47359d08
58 N1a86a4beb7e7491c8bd456fb13dd57f1
59 schema:publisher N24f55a0374f14cc5b554152370b35b26
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008847410
61 https://doi.org/10.1007/978-1-4757-9800-5_83
62 schema:sdDatePublished 2022-11-24T21:14
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N97dafbb6b0114fa7893650e74d30debd
65 schema:url https://doi.org/10.1007/978-1-4757-9800-5_83
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N176c4afcdd5847539fae0e0d47359d08 schema:name dimensions_id
70 schema:value pub.1008847410
71 rdf:type schema:PropertyValue
72 N1a86a4beb7e7491c8bd456fb13dd57f1 schema:name doi
73 schema:value 10.1007/978-1-4757-9800-5_83
74 rdf:type schema:PropertyValue
75 N1fb1a404b9c044a2a8fcb0cf657307c8 rdf:first sg:person.016163772475.40
76 rdf:rest N44b6fe6ee9bd41e48ad56c60192286e7
77 N24f55a0374f14cc5b554152370b35b26 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N2534cf3303e44a1099af922a9f7f9907 rdf:first sg:person.01114173452.11
80 rdf:rest rdf:nil
81 N26fb1c4528b740c0921f7a3442cb925e schema:isbn 978-1-4757-9800-5
82 978-1-4757-9802-9
83 schema:name Computational Neuroscience
84 rdf:type schema:Book
85 N44b6fe6ee9bd41e48ad56c60192286e7 rdf:first sg:person.01026634731.87
86 rdf:rest Nb0bb461e326d45948062ae1942d17ae7
87 N97dafbb6b0114fa7893650e74d30debd schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nb0bb461e326d45948062ae1942d17ae7 rdf:first sg:person.01146070413.11
90 rdf:rest N2534cf3303e44a1099af922a9f7f9907
91 Nccb409fb90174cb6a28c4319345fce95 schema:familyName Bower
92 schema:givenName James M.
93 rdf:type schema:Person
94 Nd9e374ed5db6441b8a04007a623b9496 rdf:first Nccb409fb90174cb6a28c4319345fce95
95 rdf:rest rdf:nil
96 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
97 schema:name Medical and Health Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
100 schema:name Neurosciences
101 rdf:type schema:DefinedTerm
102 sg:person.01026634731.87 schema:affiliation grid-institutes:grid.116068.8
103 schema:familyName Siapas
104 schema:givenName A. G.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026634731.87
106 rdf:type schema:Person
107 sg:person.01114173452.11 schema:affiliation grid-institutes:grid.253264.4
108 schema:familyName Nelson
109 schema:givenName S. B.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11
111 rdf:type schema:Person
112 sg:person.01146070413.11 schema:affiliation grid-institutes:grid.116068.8
113 schema:familyName Somers
114 schema:givenName D. C.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146070413.11
116 rdf:type schema:Person
117 sg:person.016163772475.40 schema:affiliation grid-institutes:grid.116068.8
118 schema:familyName Todorov
119 schema:givenName E. V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163772475.40
121 rdf:type schema:Person
122 grid-institutes:grid.116068.8 schema:alternateName Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
123 schema:name Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
124 rdf:type schema:Organization
125 grid-institutes:grid.253264.4 schema:alternateName Department of Biology, Brandeis University, Waltham, MA, USA
126 schema:name Department of Biology, Brandeis University, Waltham, MA, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...