A New Approach to Learning Via Self-Organization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Dimitris Stassinopoulos , Per Bak

ABSTRACT

Recently, we have introduced a simple “toy” brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible “critical” state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance. More... »

PAGES

851-857

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132

DOI

http://dx.doi.org/10.1007/978-1-4757-9800-5_132

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003340456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stassinopoulos", 
        "givenName": "Dimitris", 
        "id": "sg:person.010654626565.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654626565.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "Per", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "Recently, we have introduced a simple \u201ctoy\u201d brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible \u201ccritical\u201d state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance.", 
    "editor": [
      {
        "familyName": "Bower", 
        "givenName": "James M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-9800-5_132", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-9802-9", 
        "978-1-4757-9800-5"
      ], 
      "name": "Computational Neuroscience", 
      "type": "Book"
    }, 
    "keywords": [
      "task show", 
      "firing neurons", 
      "brain model", 
      "model departs", 
      "dramatic gains", 
      "quantitative study", 
      "sparse connections", 
      "Self-Organization", 
      "neurons", 
      "intelligence", 
      "low activity", 
      "toys", 
      "performance", 
      "absence", 
      "activity", 
      "study", 
      "approach", 
      "connection", 
      "model", 
      "new approach", 
      "gain", 
      "results", 
      "problem", 
      "departs", 
      "show", 
      "state", 
      "system", 
      "state results", 
      "external intelligence", 
      "simple association task show", 
      "association task show", 
      "critical state results", 
      "Learning Via Self-Organization", 
      "Via Self-Organization"
    ], 
    "name": "A New Approach to Learning Via Self-Organization", 
    "pagination": "851-857", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003340456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-9800-5_132"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-9800-5_132", 
      "https://app.dimensions.ai/details/publication/pub.1003340456"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_236.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-9800-5_132"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-9800-5_132 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N0943eb03e0044f01919e15b1f4b10301
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description Recently, we have introduced a simple “toy” brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible “critical” state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance.
7 schema:editor N97aebb53b6774b0586e76dbe23d81e0a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na4753b77246749d1a51fddcefe0f3b43
12 schema:keywords Learning Via Self-Organization
13 Self-Organization
14 Via Self-Organization
15 absence
16 activity
17 approach
18 association task show
19 brain model
20 connection
21 critical state results
22 departs
23 dramatic gains
24 external intelligence
25 firing neurons
26 gain
27 intelligence
28 low activity
29 model
30 model departs
31 neurons
32 new approach
33 performance
34 problem
35 quantitative study
36 results
37 show
38 simple association task show
39 sparse connections
40 state
41 state results
42 study
43 system
44 task show
45 toys
46 schema:name A New Approach to Learning Via Self-Organization
47 schema:pagination 851-857
48 schema:productId Nd03bf92676fb48738663fe738818eeec
49 Ne23c027118ce476e87225144ae260a46
50 schema:publisher N251442c17e7a4d4a8692c67ccb0aaf90
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340456
52 https://doi.org/10.1007/978-1-4757-9800-5_132
53 schema:sdDatePublished 2022-01-01T19:13
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N6ae4e85de03447949776d869302dee99
56 schema:url https://doi.org/10.1007/978-1-4757-9800-5_132
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0315e262a7c34d22a0038df7d0b3282e schema:familyName Bower
61 schema:givenName James M.
62 rdf:type schema:Person
63 N0943eb03e0044f01919e15b1f4b10301 rdf:first sg:person.010654626565.17
64 rdf:rest N55b5dd37f4dc444da99a2dde90d29c17
65 N251442c17e7a4d4a8692c67ccb0aaf90 schema:name Springer Nature
66 rdf:type schema:Organisation
67 N55b5dd37f4dc444da99a2dde90d29c17 rdf:first sg:person.010472724377.34
68 rdf:rest rdf:nil
69 N6ae4e85de03447949776d869302dee99 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N97aebb53b6774b0586e76dbe23d81e0a rdf:first N0315e262a7c34d22a0038df7d0b3282e
72 rdf:rest rdf:nil
73 Na4753b77246749d1a51fddcefe0f3b43 schema:isbn 978-1-4757-9800-5
74 978-1-4757-9802-9
75 schema:name Computational Neuroscience
76 rdf:type schema:Book
77 Nd03bf92676fb48738663fe738818eeec schema:name dimensions_id
78 schema:value pub.1003340456
79 rdf:type schema:PropertyValue
80 Ne23c027118ce476e87225144ae260a46 schema:name doi
81 schema:value 10.1007/978-1-4757-9800-5_132
82 rdf:type schema:PropertyValue
83 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
84 schema:name Psychology and Cognitive Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
87 schema:name Psychology
88 rdf:type schema:DefinedTerm
89 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
90 schema:familyName Bak
91 schema:givenName Per
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
93 rdf:type schema:Person
94 sg:person.010654626565.17 schema:affiliation grid-institutes:grid.255951.f
95 schema:familyName Stassinopoulos
96 schema:givenName Dimitris
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654626565.17
98 rdf:type schema:Person
99 grid-institutes:grid.202665.5 schema:alternateName Department of Physics, Brookhaven National Laboratory, Upton, NY, USA
100 schema:name Department of Physics, Brookhaven National Laboratory, Upton, NY, USA
101 rdf:type schema:Organization
102 grid-institutes:grid.255951.f schema:alternateName Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA
103 schema:name Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...