A New Approach to Learning Via Self-Organization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Dimitris Stassinopoulos , Per Bak

ABSTRACT

Recently, we have introduced a simple “toy” brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible “critical” state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance. More... »

PAGES

851-857

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132

DOI

http://dx.doi.org/10.1007/978-1-4757-9800-5_132

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003340456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stassinopoulos", 
        "givenName": "Dimitris", 
        "id": "sg:person.010654626565.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654626565.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brookhaven National Laboratory, Upton, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Department of Physics, Brookhaven National Laboratory, Upton, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "Per", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "Recently, we have introduced a simple \u201ctoy\u201d brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible \u201ccritical\u201d state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance.", 
    "editor": [
      {
        "familyName": "Bower", 
        "givenName": "James M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-9800-5_132", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-9802-9", 
        "978-1-4757-9800-5"
      ], 
      "name": "Computational Neuroscience", 
      "type": "Book"
    }, 
    "keywords": [
      "task show", 
      "firing neurons", 
      "brain model", 
      "model departs", 
      "dramatic gains", 
      "quantitative study", 
      "sparse connections", 
      "Self-Organization", 
      "neurons", 
      "intelligence", 
      "low activity", 
      "toys", 
      "performance", 
      "absence", 
      "activity", 
      "study", 
      "approach", 
      "connection", 
      "model", 
      "new approach", 
      "gain", 
      "results", 
      "problem", 
      "departs", 
      "show", 
      "state", 
      "system", 
      "state results", 
      "external intelligence", 
      "simple association task show", 
      "association task show", 
      "critical state results", 
      "Learning Via Self-Organization", 
      "Via Self-Organization"
    ], 
    "name": "A New Approach to Learning Via Self-Organization", 
    "pagination": "851-857", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003340456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-9800-5_132"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-9800-5_132", 
      "https://app.dimensions.ai/details/publication/pub.1003340456"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_410.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-9800-5_132"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9800-5_132'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-9800-5_132 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N0092f8caf8fd45d0b1544648571e0903
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description Recently, we have introduced a simple “toy” brain model to address the problem of learning in the absence of external intelligence.1 Our model departs from the traditional gradient-descent based approaches to learning by operating at a highly susceptible “critical” state with low activity and sparse connections between firing neurons. Here, quantitative studies of the performance of our model in a simple association task show that tuning our system close to this critical state results in dramatic gains in performance.
7 schema:editor N9d0aef330f8743e89d45068cbdb08d93
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N977f7eea9e744ef4a7096cb070d892e8
12 schema:keywords Learning Via Self-Organization
13 Self-Organization
14 Via Self-Organization
15 absence
16 activity
17 approach
18 association task show
19 brain model
20 connection
21 critical state results
22 departs
23 dramatic gains
24 external intelligence
25 firing neurons
26 gain
27 intelligence
28 low activity
29 model
30 model departs
31 neurons
32 new approach
33 performance
34 problem
35 quantitative study
36 results
37 show
38 simple association task show
39 sparse connections
40 state
41 state results
42 study
43 system
44 task show
45 toys
46 schema:name A New Approach to Learning Via Self-Organization
47 schema:pagination 851-857
48 schema:productId N5b47bd5e1e8f4b239211a37f8379d251
49 N7c1be5e2ca224a608eddcfa27099d9f8
50 schema:publisher N0ac7123d2b894f91ad40947f3ae70f2d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340456
52 https://doi.org/10.1007/978-1-4757-9800-5_132
53 schema:sdDatePublished 2021-11-01T19:00
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N4d9b4cf323014aa0ad6802d8bf634f03
56 schema:url https://doi.org/10.1007/978-1-4757-9800-5_132
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0092f8caf8fd45d0b1544648571e0903 rdf:first sg:person.010654626565.17
61 rdf:rest Ndd701c3eff37402c8fe17be937ecb235
62 N0ac7123d2b894f91ad40947f3ae70f2d schema:name Springer Nature
63 rdf:type schema:Organisation
64 N39af14368d7744248d4c7c6e77c2eebb schema:familyName Bower
65 schema:givenName James M.
66 rdf:type schema:Person
67 N4d9b4cf323014aa0ad6802d8bf634f03 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N5b47bd5e1e8f4b239211a37f8379d251 schema:name dimensions_id
70 schema:value pub.1003340456
71 rdf:type schema:PropertyValue
72 N7c1be5e2ca224a608eddcfa27099d9f8 schema:name doi
73 schema:value 10.1007/978-1-4757-9800-5_132
74 rdf:type schema:PropertyValue
75 N977f7eea9e744ef4a7096cb070d892e8 schema:isbn 978-1-4757-9800-5
76 978-1-4757-9802-9
77 schema:name Computational Neuroscience
78 rdf:type schema:Book
79 N9d0aef330f8743e89d45068cbdb08d93 rdf:first N39af14368d7744248d4c7c6e77c2eebb
80 rdf:rest rdf:nil
81 Ndd701c3eff37402c8fe17be937ecb235 rdf:first sg:person.010472724377.34
82 rdf:rest rdf:nil
83 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
84 schema:name Psychology and Cognitive Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
87 schema:name Psychology
88 rdf:type schema:DefinedTerm
89 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
90 schema:familyName Bak
91 schema:givenName Per
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
93 rdf:type schema:Person
94 sg:person.010654626565.17 schema:affiliation grid-institutes:grid.255951.f
95 schema:familyName Stassinopoulos
96 schema:givenName Dimitris
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654626565.17
98 rdf:type schema:Person
99 grid-institutes:grid.202665.5 schema:alternateName Department of Physics, Brookhaven National Laboratory, Upton, NY, USA
100 schema:name Department of Physics, Brookhaven National Laboratory, Upton, NY, USA
101 rdf:type schema:Organization
102 grid-institutes:grid.255951.f schema:alternateName Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA
103 schema:name Center for Complex Systems, Florida Atlantic University, Boca Raton, FL, USA
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...