Fast Photoconductive Photodetectors Employing Iron-Diffusion into Epitaxial GaAs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Jun Ohsawa , Nobuhiko Hashimoto , Motohisa Nakamura , Masatoshi Migitaka

ABSTRACT

Iron in gallium arsenide forms a deep acceptor level at 0.46 ev above the valence band.l This energy level can be used to overcompensate nGaAs layers resulting in highresistivity ptype material. 2,3 Although the level was identified as a hole trap,4 it is expected in p-type materials to function as a recombination center rather than a trap. Hence fast response without a long tail can be realized. The photodetectors on the iron-diffused layers exhibit short decays limited by the carrier lifetime rather than the carrier transit time: Voltage pulses with full widths at half-maximum (FWHMs) as short as 72 ps were observed in spite of the large spacing of 15 pµm between the fingers of interdigitated electrodes. An analysis revealed that the deconvolved FWHM is about 50 ps and the transit distance of electrons is less than 5 µm.5 Then an improvement in responsivity can be expected with a finer electrode pattern fitted to the transit distance. This approach is important in increasing the “reduced” sensitivity of lifetime-limited devices. Here we report on the characteristics of the devices with a finger spacing/width (L/W) combination of 7µµm/3µm in comparison with those of l5µm/5µm. More... »

PAGES

479-482

References to SciGraph publications

Book

TITLE

Applications of Photonic Technology

ISBN

978-1-4757-9249-2
978-1-4757-9247-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-9247-8_91

DOI

http://dx.doi.org/10.1007/978-1-4757-9247-8_91

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020250555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toyota Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.265129.b", 
          "name": [
            "Department of Information and Control, Toyota Technological Institute, 2-12 Hisakata, Tempaku, Nagoya, 468, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohsawa", 
        "givenName": "Jun", 
        "id": "sg:person.016257600025.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016257600025.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.265129.b", 
          "name": [
            "Department of Information and Control, Toyota Technological Institute, 2-12 Hisakata, Tempaku, Nagoya, 468, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Nobuhiko", 
        "id": "sg:person.010352107225.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352107225.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.265129.b", 
          "name": [
            "Department of Information and Control, Toyota Technological Institute, 2-12 Hisakata, Tempaku, Nagoya, 468, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Motohisa", 
        "id": "sg:person.011147467625.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147467625.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.265129.b", 
          "name": [
            "Department of Information and Control, Toyota Technological Institute, 2-12 Hisakata, Tempaku, Nagoya, 468, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Migitaka", 
        "givenName": "Masatoshi", 
        "id": "sg:person.011063757017.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063757017.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02660189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013932466", 
          "https://doi.org/10.1007/bf02660189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02660189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013932466", 
          "https://doi.org/10.1007/bf02660189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2086996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042587590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.354006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057970541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-ed.1982.20894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061462634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.30.l877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063048138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.32.l1066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063050932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Iron in gallium arsenide forms a deep acceptor level at 0.46 ev above the valence band.l This energy level can be used to overcompensate nGaAs layers resulting in highresistivity ptype material. 2,3 Although the level was identified as a hole trap,4 it is expected in p-type materials to function as a recombination center rather than a trap. Hence fast response without a long tail can be realized. The photodetectors on the iron-diffused layers exhibit short decays limited by the carrier lifetime rather than the carrier transit time: Voltage pulses with full widths at half-maximum (FWHMs) as short as 72 ps were observed in spite of the large spacing of 15 p\u00b5m between the fingers of interdigitated electrodes. An analysis revealed that the deconvolved FWHM is about 50 ps and the transit distance of electrons is less than 5 \u00b5m.5 Then an improvement in responsivity can be expected with a finer electrode pattern fitted to the transit distance. This approach is important in increasing the \u201creduced\u201d sensitivity of lifetime-limited devices. Here we report on the characteristics of the devices with a finger spacing/width (L/W) combination of 7\u00b5\u00b5m/3\u00b5m in comparison with those of l5\u00b5m/5\u00b5m.", 
    "editor": [
      {
        "familyName": "Lampropoulos", 
        "givenName": "George A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chrostowski", 
        "givenName": "Jacek", 
        "type": "Person"
      }, 
      {
        "familyName": "Measures", 
        "givenName": "Raymond M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-9247-8_91", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-9249-2", 
        "978-1-4757-9247-8"
      ], 
      "name": "Applications of Photonic Technology", 
      "type": "Book"
    }, 
    "name": "Fast Photoconductive Photodetectors Employing Iron-Diffusion into Epitaxial GaAs", 
    "pagination": "479-482", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-9247-8_91"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "607cfb7377fc19b049dc7ed451ebf48d92a6903756c5c4fc327fd2f2397c0351"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020250555"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-9247-8_91", 
      "https://app.dimensions.ai/details/publication/pub.1020250555"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4757-9247-8_91"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9247-8_91'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9247-8_91'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9247-8_91'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-9247-8_91'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-9247-8_91 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N49e77ca92f4a453bb5f5a1c0acbe2ecc
4 schema:citation sg:pub.10.1007/bf02660189
5 https://doi.org/10.1063/1.354006
6 https://doi.org/10.1109/t-ed.1982.20894
7 https://doi.org/10.1143/jjap.30.l877
8 https://doi.org/10.1143/jjap.32.l1066
9 https://doi.org/10.1149/1.2086996
10 schema:datePublished 1995
11 schema:datePublishedReg 1995-01-01
12 schema:description Iron in gallium arsenide forms a deep acceptor level at 0.46 ev above the valence band.l This energy level can be used to overcompensate nGaAs layers resulting in highresistivity ptype material. 2,3 Although the level was identified as a hole trap,4 it is expected in p-type materials to function as a recombination center rather than a trap. Hence fast response without a long tail can be realized. The photodetectors on the iron-diffused layers exhibit short decays limited by the carrier lifetime rather than the carrier transit time: Voltage pulses with full widths at half-maximum (FWHMs) as short as 72 ps were observed in spite of the large spacing of 15 pµm between the fingers of interdigitated electrodes. An analysis revealed that the deconvolved FWHM is about 50 ps and the transit distance of electrons is less than 5 µm.5 Then an improvement in responsivity can be expected with a finer electrode pattern fitted to the transit distance. This approach is important in increasing the “reduced” sensitivity of lifetime-limited devices. Here we report on the characteristics of the devices with a finger spacing/width (L/W) combination of 7µµm/3µm in comparison with those of l5µm/5µm.
13 schema:editor Nf9eb999f7cd348aaafcaf51ec13aea48
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2bdb0eb848734fc1bd33de08635760f7
18 schema:name Fast Photoconductive Photodetectors Employing Iron-Diffusion into Epitaxial GaAs
19 schema:pagination 479-482
20 schema:productId N5089e4aa499843ac813501b919911a35
21 Nf42ab12bd70b4f15ba8cbb96cce85d0c
22 Nf94f2d0e03214fcc996f60760b803e70
23 schema:publisher Nc5999aa57a8341e0ad9267a7e246a486
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250555
25 https://doi.org/10.1007/978-1-4757-9247-8_91
26 schema:sdDatePublished 2019-04-15T23:51
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N45cdbeb6c1c943b9a40b94b5798df05b
29 schema:url http://link.springer.com/10.1007/978-1-4757-9247-8_91
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N07a8aac23d33445382b885773de8141f rdf:first N407ef22bd3d74c5cbebc3489a7c9a9ba
34 rdf:rest rdf:nil
35 N2bdb0eb848734fc1bd33de08635760f7 schema:isbn 978-1-4757-9247-8
36 978-1-4757-9249-2
37 schema:name Applications of Photonic Technology
38 rdf:type schema:Book
39 N3928280b51504964a86676b3dca774e3 schema:familyName Lampropoulos
40 schema:givenName George A.
41 rdf:type schema:Person
42 N407ef22bd3d74c5cbebc3489a7c9a9ba schema:familyName Measures
43 schema:givenName Raymond M.
44 rdf:type schema:Person
45 N45cdbeb6c1c943b9a40b94b5798df05b schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N49e77ca92f4a453bb5f5a1c0acbe2ecc rdf:first sg:person.016257600025.94
48 rdf:rest N9e64569e180c4ffea705759c1355ba4d
49 N5089e4aa499843ac813501b919911a35 schema:name dimensions_id
50 schema:value pub.1020250555
51 rdf:type schema:PropertyValue
52 N636d98b7035349a590ef72fca96fffa1 rdf:first sg:person.011063757017.03
53 rdf:rest rdf:nil
54 N9e64569e180c4ffea705759c1355ba4d rdf:first sg:person.010352107225.08
55 rdf:rest Ne4f58bf0e1df40b69a9a820c2e8c308d
56 Nc5999aa57a8341e0ad9267a7e246a486 schema:location Boston, MA
57 schema:name Springer US
58 rdf:type schema:Organisation
59 Ne4f58bf0e1df40b69a9a820c2e8c308d rdf:first sg:person.011147467625.88
60 rdf:rest N636d98b7035349a590ef72fca96fffa1
61 Ne67e4b759590463887a73bffc02d4450 rdf:first Nf3fb10fcec2b44338154c5498d00e713
62 rdf:rest N07a8aac23d33445382b885773de8141f
63 Nf3fb10fcec2b44338154c5498d00e713 schema:familyName Chrostowski
64 schema:givenName Jacek
65 rdf:type schema:Person
66 Nf42ab12bd70b4f15ba8cbb96cce85d0c schema:name readcube_id
67 schema:value 607cfb7377fc19b049dc7ed451ebf48d92a6903756c5c4fc327fd2f2397c0351
68 rdf:type schema:PropertyValue
69 Nf94f2d0e03214fcc996f60760b803e70 schema:name doi
70 schema:value 10.1007/978-1-4757-9247-8_91
71 rdf:type schema:PropertyValue
72 Nf9eb999f7cd348aaafcaf51ec13aea48 rdf:first N3928280b51504964a86676b3dca774e3
73 rdf:rest Ne67e4b759590463887a73bffc02d4450
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
78 schema:name Materials Engineering
79 rdf:type schema:DefinedTerm
80 sg:person.010352107225.08 schema:affiliation https://www.grid.ac/institutes/grid.265129.b
81 schema:familyName Hashimoto
82 schema:givenName Nobuhiko
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352107225.08
84 rdf:type schema:Person
85 sg:person.011063757017.03 schema:affiliation https://www.grid.ac/institutes/grid.265129.b
86 schema:familyName Migitaka
87 schema:givenName Masatoshi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063757017.03
89 rdf:type schema:Person
90 sg:person.011147467625.88 schema:affiliation https://www.grid.ac/institutes/grid.265129.b
91 schema:familyName Nakamura
92 schema:givenName Motohisa
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147467625.88
94 rdf:type schema:Person
95 sg:person.016257600025.94 schema:affiliation https://www.grid.ac/institutes/grid.265129.b
96 schema:familyName Ohsawa
97 schema:givenName Jun
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016257600025.94
99 rdf:type schema:Person
100 sg:pub.10.1007/bf02660189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013932466
101 https://doi.org/10.1007/bf02660189
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.354006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970541
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/t-ed.1982.20894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061462634
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1143/jjap.30.l877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063048138
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1143/jjap.32.l1066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063050932
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1149/1.2086996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042587590
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.265129.b schema:alternateName Toyota Technological Institute
114 schema:name Department of Information and Control, Toyota Technological Institute, 2-12 Hisakata, Tempaku, Nagoya, 468, Japan
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...