The State of Elliptic Curve Cryptography View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Neal Koblitz , Alfred Menezes , Scott Vanstone

ABSTRACT

Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations. More... »

PAGES

103-123

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-6856-5_5

DOI

http://dx.doi.org/10.1007/978-1-4757-6856-5_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051015734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koblitz", 
        "givenName": "Neal", 
        "id": "sg:person.015751265415.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751265415.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menezes", 
        "givenName": "Alfred", 
        "id": "sg:person.012711653371.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "Scott", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.", 
    "editor": [
      {
        "familyName": "Koblitz", 
        "givenName": "Neal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-6856-5_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-4972-1", 
        "978-1-4757-6856-5"
      ], 
      "name": "Towards a Quarter-Century of Public Key Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "discrete logarithm problem", 
      "logarithm problem", 
      "elliptic curve cryptography", 
      "elliptic curve cryptosystem", 
      "public key cryptography", 
      "elliptic curve group", 
      "public key cryptosystem", 
      "public key system", 
      "small block size", 
      "high security", 
      "curve group", 
      "block size", 
      "cryptography", 
      "cryptosystem", 
      "Diffie", 
      "present-day implementation", 
      "Hellman", 
      "integers modulo", 
      "high speed", 
      "Koblitz", 
      "security", 
      "multiplicative group", 
      "arbitrary groups", 
      "implementation", 
      "system", 
      "idea", 
      "speed", 
      "modulo", 
      "generator", 
      "day implementation", 
      "use", 
      "development", 
      "state", 
      "introduction", 
      "respect", 
      "size", 
      "primes", 
      "inception", 
      "logarithm", 
      "potential", 
      "group", 
      "Miller", 
      "problem", 
      "paper"
    ], 
    "name": "The State of Elliptic Curve Cryptography", 
    "pagination": "103-123", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051015734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-6856-5_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-6856-5_5", 
      "https://app.dimensions.ai/details/publication/pub.1051015734"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_438.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-6856-5_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6856-5_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6856-5_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6856-5_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6856-5_5'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-6856-5_5 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N3ecbabb6e37148efbf363c1176061681
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Since the introduction of public-key cryptography by Diffie and Hellman in 1976, the potential for the use of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete logarithm problem as first employed by Diffie and Hellman was defined explicitly as the problem of finding logarithms with respect to a generator in the multiplicative group of the integers modulo a prime, this idea can be extended to arbitrary groups and, in particular, to elliptic curve groups. The resulting public-key systems provide relatively small block size, high speed, and high security. This paper surveys the development of elliptic curve cryptosystems from their inception in 1985 by Koblitz and Miller to present day implementations.
7 schema:editor N036f34dd30064d1eb1b10cd3769fe53f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne33ef814ba41414590d996c64e6d65d5
11 schema:keywords Diffie
12 Hellman
13 Koblitz
14 Miller
15 arbitrary groups
16 block size
17 cryptography
18 cryptosystem
19 curve group
20 day implementation
21 development
22 discrete logarithm problem
23 elliptic curve cryptography
24 elliptic curve cryptosystem
25 elliptic curve group
26 generator
27 group
28 high security
29 high speed
30 idea
31 implementation
32 inception
33 integers modulo
34 introduction
35 logarithm
36 logarithm problem
37 modulo
38 multiplicative group
39 paper
40 potential
41 present-day implementation
42 primes
43 problem
44 public key cryptography
45 public key cryptosystem
46 public key system
47 respect
48 security
49 size
50 small block size
51 speed
52 state
53 system
54 use
55 schema:name The State of Elliptic Curve Cryptography
56 schema:pagination 103-123
57 schema:productId N01147228fba642479fdcf602a8d0f7c3
58 Nf1f6f9b228b245e4b038323eacac9311
59 schema:publisher N2eae5726ab9f493b86b40ffff14dcf22
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051015734
61 https://doi.org/10.1007/978-1-4757-6856-5_5
62 schema:sdDatePublished 2022-09-02T16:16
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N725504649cde4811a28531715e61ff8b
65 schema:url https://doi.org/10.1007/978-1-4757-6856-5_5
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N01147228fba642479fdcf602a8d0f7c3 schema:name dimensions_id
70 schema:value pub.1051015734
71 rdf:type schema:PropertyValue
72 N036f34dd30064d1eb1b10cd3769fe53f rdf:first Na9f4ce5db18f47b88507cafc8cac1276
73 rdf:rest rdf:nil
74 N2c4e0497fe754849b38b29e82be94f46 rdf:first sg:person.010344544767.07
75 rdf:rest rdf:nil
76 N2eae5726ab9f493b86b40ffff14dcf22 schema:name Springer Nature
77 rdf:type schema:Organisation
78 N3ecbabb6e37148efbf363c1176061681 rdf:first sg:person.015751265415.45
79 rdf:rest N62b2eb7aadff4d249d839b7ed6016026
80 N62b2eb7aadff4d249d839b7ed6016026 rdf:first sg:person.012711653371.43
81 rdf:rest N2c4e0497fe754849b38b29e82be94f46
82 N725504649cde4811a28531715e61ff8b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Na9f4ce5db18f47b88507cafc8cac1276 schema:familyName Koblitz
85 schema:givenName Neal
86 rdf:type schema:Person
87 Ne33ef814ba41414590d996c64e6d65d5 schema:isbn 978-1-4419-4972-1
88 978-1-4757-6856-5
89 schema:name Towards a Quarter-Century of Public Key Cryptography
90 rdf:type schema:Book
91 Nf1f6f9b228b245e4b038323eacac9311 schema:name doi
92 schema:value 10.1007/978-1-4757-6856-5_5
93 rdf:type schema:PropertyValue
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
98 schema:name Data Format
99 rdf:type schema:DefinedTerm
100 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
101 schema:familyName Vanstone
102 schema:givenName Scott
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
104 rdf:type schema:Person
105 sg:person.012711653371.43 schema:affiliation grid-institutes:grid.46078.3d
106 schema:familyName Menezes
107 schema:givenName Alfred
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43
109 rdf:type schema:Person
110 sg:person.015751265415.45 schema:affiliation grid-institutes:grid.34477.33
111 schema:familyName Koblitz
112 schema:givenName Neal
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751265415.45
114 rdf:type schema:Person
115 grid-institutes:grid.34477.33 schema:alternateName Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA
116 schema:name Dept. of Mathematics, University of Washington, Box 354350, 98195, Seattle, WA, USA
117 rdf:type schema:Organization
118 grid-institutes:grid.46078.3d schema:alternateName Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
119 schema:name Dept. of C&O, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...