Generation and Detection of Subpoissonian Fields in Micromasers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

P. Meystre

ABSTRACT

Subpoissonian fields, and in particular number states of the electromagnetic field, exhibit intensity fluctuations below the classical limit. The last few years have witnessed considerable interest in the generation of such states. To our knowledge, the first observation of subpoissonian fields was performed by Short and Mandel1 in single-atom resonance fluorescence, following a prediction of Carmichael and Walls.2 More recently, Saleh and Teich3 and Walker and Jakeman4 have produced subpoissonian fields by using antibunched electron sources and detection-event-triggered deadtimes in light beams, respectively. An important technological breakthrough was achieved by Machida et al,5 who demonstrated subpoissonian (or intensity squeezed) fields in a pump-noisesuppressed semiconductor laser. This method is closely related to the generation of subpoissonian light in a micromaser6 as well as to the recent proposal of a squeezed-pump laser by Marte and Walls.7 High number states of the electromagnetic field were recently generated by Walther8 following a prediction by Filipowicz et al.9 More... »

PAGES

115-127

Book

TITLE

Squeezed and Nonclassical Light

ISBN

978-1-4757-6576-2
978-1-4757-6574-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-6574-8_9

DOI

http://dx.doi.org/10.1007/978-1-4757-6574-8_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009770359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meystre", 
        "givenName": "P.", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "Subpoissonian fields, and in particular number states of the electromagnetic field, exhibit intensity fluctuations below the classical limit. The last few years have witnessed considerable interest in the generation of such states. To our knowledge, the first observation of subpoissonian fields was performed by Short and Mandel1 in single-atom resonance fluorescence, following a prediction of Carmichael and Walls.2 More recently, Saleh and Teich3 and Walker and Jakeman4 have produced subpoissonian fields by using antibunched electron sources and detection-event-triggered deadtimes in light beams, respectively. An important technological breakthrough was achieved by Machida et al,5 who demonstrated subpoissonian (or intensity squeezed) fields in a pump-noisesuppressed semiconductor laser. This method is closely related to the generation of subpoissonian light in a micromaser6 as well as to the recent proposal of a squeezed-pump laser by Marte and Walls.7 High number states of the electromagnetic field were recently generated by Walther8 following a prediction by Filipowicz et al.9", 
    "editor": [
      {
        "familyName": "Tombesi", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pike", 
        "givenName": "E. R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-6574-8_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-6576-2", 
        "978-1-4757-6574-8"
      ], 
      "name": "Squeezed and Nonclassical Light", 
      "type": "Book"
    }, 
    "keywords": [
      "number states", 
      "single-atom resonance fluorescence", 
      "electromagnetic field", 
      "resonance fluorescence", 
      "semiconductor lasers", 
      "electron source", 
      "light beam", 
      "important technological breakthrough", 
      "classical limit", 
      "intensity fluctuations", 
      "such states", 
      "first observation", 
      "laser", 
      "field", 
      "micromaser", 
      "Mandel1", 
      "beam", 
      "recent proposal", 
      "state", 
      "et al", 
      "technological breakthroughs", 
      "generation", 
      "fluorescence", 
      "light", 
      "fluctuations", 
      "deadtime", 
      "considerable interest", 
      "limit", 
      "prediction", 
      "al", 
      "source", 
      "breakthrough", 
      "detection", 
      "Carmichael", 
      "Short", 
      "wall", 
      "method", 
      "interest", 
      "ET", 
      "proposal", 
      "Walker", 
      "Saleh", 
      "MARTE", 
      "knowledge", 
      "years", 
      "observations", 
      "subpoissonian fields", 
      "particular number states", 
      "exhibit intensity fluctuations", 
      "prediction of Carmichael", 
      "Teich3", 
      "Jakeman4", 
      "antibunched electron sources", 
      "Machida et", 
      "pump-noisesuppressed semiconductor laser", 
      "subpoissonian light", 
      "micromaser6", 
      "squeezed-pump laser", 
      "High number states", 
      "Walther8", 
      "Filipowicz et al"
    ], 
    "name": "Generation and Detection of Subpoissonian Fields in Micromasers", 
    "pagination": "115-127", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009770359"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-6574-8_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-6574-8_9", 
      "https://app.dimensions.ai/details/publication/pub.1009770359"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-6574-8_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6574-8_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6574-8_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6574-8_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6574-8_9'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-6574-8_9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nab46244e907b47c59bfa7dd727ac1206
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description Subpoissonian fields, and in particular number states of the electromagnetic field, exhibit intensity fluctuations below the classical limit. The last few years have witnessed considerable interest in the generation of such states. To our knowledge, the first observation of subpoissonian fields was performed by Short and Mandel1 in single-atom resonance fluorescence, following a prediction of Carmichael and Walls.2 More recently, Saleh and Teich3 and Walker and Jakeman4 have produced subpoissonian fields by using antibunched electron sources and detection-event-triggered deadtimes in light beams, respectively. An important technological breakthrough was achieved by Machida et al,5 who demonstrated subpoissonian (or intensity squeezed) fields in a pump-noisesuppressed semiconductor laser. This method is closely related to the generation of subpoissonian light in a micromaser6 as well as to the recent proposal of a squeezed-pump laser by Marte and Walls.7 High number states of the electromagnetic field were recently generated by Walther8 following a prediction by Filipowicz et al.9
7 schema:editor N89d483b477c4486598da8cbc227298cf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6d8ccb784b774bc4a1bc14ada6b7736a
12 schema:keywords Carmichael
13 ET
14 Filipowicz et al
15 High number states
16 Jakeman4
17 MARTE
18 Machida et
19 Mandel1
20 Saleh
21 Short
22 Teich3
23 Walker
24 Walther8
25 al
26 antibunched electron sources
27 beam
28 breakthrough
29 classical limit
30 considerable interest
31 deadtime
32 detection
33 electromagnetic field
34 electron source
35 et al
36 exhibit intensity fluctuations
37 field
38 first observation
39 fluctuations
40 fluorescence
41 generation
42 important technological breakthrough
43 intensity fluctuations
44 interest
45 knowledge
46 laser
47 light
48 light beam
49 limit
50 method
51 micromaser
52 micromaser6
53 number states
54 observations
55 particular number states
56 prediction
57 prediction of Carmichael
58 proposal
59 pump-noisesuppressed semiconductor laser
60 recent proposal
61 resonance fluorescence
62 semiconductor lasers
63 single-atom resonance fluorescence
64 source
65 squeezed-pump laser
66 state
67 subpoissonian fields
68 subpoissonian light
69 such states
70 technological breakthroughs
71 wall
72 years
73 schema:name Generation and Detection of Subpoissonian Fields in Micromasers
74 schema:pagination 115-127
75 schema:productId Nedb2989d723143e8a1a7d0edd33b593a
76 Nf8f43079214d472ab343239e2e4634be
77 schema:publisher N06063b0c81a64489bf469b46d5905a72
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770359
79 https://doi.org/10.1007/978-1-4757-6574-8_9
80 schema:sdDatePublished 2022-01-01T19:07
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N6d29a8330e824af686f2059eef351625
83 schema:url https://doi.org/10.1007/978-1-4757-6574-8_9
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N06063b0c81a64489bf469b46d5905a72 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N6d29a8330e824af686f2059eef351625 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N6d8ccb784b774bc4a1bc14ada6b7736a schema:isbn 978-1-4757-6574-8
92 978-1-4757-6576-2
93 schema:name Squeezed and Nonclassical Light
94 rdf:type schema:Book
95 N89d483b477c4486598da8cbc227298cf rdf:first Ne9c8fb5bcc2045f887561828f4f1aec3
96 rdf:rest Nb3c0758311a14bdc895c1dbbc70c632b
97 Nab46244e907b47c59bfa7dd727ac1206 rdf:first sg:person.010042543335.11
98 rdf:rest rdf:nil
99 Nb3c0758311a14bdc895c1dbbc70c632b rdf:first Ne3c3edc7e4b44a998eba64c785b2496d
100 rdf:rest rdf:nil
101 Ne3c3edc7e4b44a998eba64c785b2496d schema:familyName Pike
102 schema:givenName E. R.
103 rdf:type schema:Person
104 Ne9c8fb5bcc2045f887561828f4f1aec3 schema:familyName Tombesi
105 schema:givenName P.
106 rdf:type schema:Person
107 Nedb2989d723143e8a1a7d0edd33b593a schema:name dimensions_id
108 schema:value pub.1009770359
109 rdf:type schema:PropertyValue
110 Nf8f43079214d472ab343239e2e4634be schema:name doi
111 schema:value 10.1007/978-1-4757-6574-8_9
112 rdf:type schema:PropertyValue
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
117 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
118 rdf:type schema:DefinedTerm
119 sg:person.010042543335.11 schema:affiliation grid-institutes:grid.134563.6
120 schema:familyName Meystre
121 schema:givenName P.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
123 rdf:type schema:Person
124 grid-institutes:grid.134563.6 schema:alternateName Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
125 schema:name Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...