High Power, Tunable Waveguide CO2 Lasers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

Franco Strumia , Nadia Ioli

ABSTRACT

The CO2 laser is the most popular source of coherent mid-infrared radiation and is widely used both for scientific and technological applications. High efficiency and high power can be obtained either in CW and in pulsed regime. The emitted wavelength can be tuned over many different lines in the interval 9–11 μm by using a diffraction grating as an intracavity dispersive element. The CO2 laser can also be frequency stabilized with high reproducibility. As a secondary frequency standard it plays a fundamental role in the measurement of the speed of light and in the new definition of the unit of length. Other important scientific applications are plasma generation, molecular multiphoton dissociation, isotopic separation, LIDAR, molecular spectroscopy, and generation of medium and far-infrared (MIR,FIR) coherent radiation either by stimulated Raman scattering or resonant optical pumping of molecular transitions. By means of the molecular FIR laser optically pumped by the CO2 laser this spectral region was covered for the first time with thousands of CW laser lines of relatively high power so that the laser spectroscopy has been extended down to the microwave region 1. More... »

PAGES

189-199

Book

TITLE

Physics of New Laser Sources

ISBN

978-1-4757-6189-4
978-1-4757-6187-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-6187-0_14

DOI

http://dx.doi.org/10.1007/978-1-4757-6187-0_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014265724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pisa and GNSM \u2014 CNR, Piazza Torricelli 2, 56100\u00a0Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strumia", 
        "givenName": "Franco", 
        "id": "sg:person.011723573566.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723573566.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pisa and GNSM \u2014 CNR, Piazza Torricelli 2, 56100\u00a0Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioli", 
        "givenName": "Nadia", 
        "id": "sg:person.014457422303.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014457422303.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1964.tb04108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026920691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00895012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033407602", 
          "https://doi.org/10.1007/bf00895012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02798786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035736645", 
          "https://doi.org/10.1007/bf02798786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1714517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057782191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.323761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057922682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1972.1076875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061300148"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "The CO2 laser is the most popular source of coherent mid-infrared radiation and is widely used both for scientific and technological applications. High efficiency and high power can be obtained either in CW and in pulsed regime. The emitted wavelength can be tuned over many different lines in the interval 9\u201311 \u03bcm by using a diffraction grating as an intracavity dispersive element. The CO2 laser can also be frequency stabilized with high reproducibility. As a secondary frequency standard it plays a fundamental role in the measurement of the speed of light and in the new definition of the unit of length. Other important scientific applications are plasma generation, molecular multiphoton dissociation, isotopic separation, LIDAR, molecular spectroscopy, and generation of medium and far-infrared (MIR,FIR) coherent radiation either by stimulated Raman scattering or resonant optical pumping of molecular transitions. By means of the molecular FIR laser optically pumped by the CO2 laser this spectral region was covered for the first time with thousands of CW laser lines of relatively high power so that the laser spectroscopy has been extended down to the microwave region 1.", 
    "editor": [
      {
        "familyName": "Abraham", 
        "givenName": "Neal B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Arecchi", 
        "givenName": "F. T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mooradian", 
        "givenName": "Aram", 
        "type": "Person"
      }, 
      {
        "familyName": "Sona", 
        "givenName": "Alberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-6187-0_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-6189-4", 
        "978-1-4757-6187-0"
      ], 
      "name": "Physics of New Laser Sources", 
      "type": "Book"
    }, 
    "name": "High Power, Tunable Waveguide CO2 Lasers", 
    "pagination": "189-199", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-6187-0_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43f5e9b87346aa7c58be21472a52332b36d07200b39c8f65e3adaf4ab668dcc8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014265724"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-6187-0_14", 
      "https://app.dimensions.ai/details/publication/pub.1014265724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4757-6187-0_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6187-0_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6187-0_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6187-0_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-6187-0_14'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-6187-0_14 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0cab1ef7be1a40778ac14f77fb088799
4 schema:citation sg:pub.10.1007/bf00895012
5 sg:pub.10.1007/bf02798786
6 https://doi.org/10.1002/j.1538-7305.1964.tb04108.x
7 https://doi.org/10.1063/1.1654037
8 https://doi.org/10.1063/1.1714517
9 https://doi.org/10.1063/1.323761
10 https://doi.org/10.1109/jqe.1972.1076875
11 schema:datePublished 1985
12 schema:datePublishedReg 1985-01-01
13 schema:description The CO2 laser is the most popular source of coherent mid-infrared radiation and is widely used both for scientific and technological applications. High efficiency and high power can be obtained either in CW and in pulsed regime. The emitted wavelength can be tuned over many different lines in the interval 9–11 μm by using a diffraction grating as an intracavity dispersive element. The CO2 laser can also be frequency stabilized with high reproducibility. As a secondary frequency standard it plays a fundamental role in the measurement of the speed of light and in the new definition of the unit of length. Other important scientific applications are plasma generation, molecular multiphoton dissociation, isotopic separation, LIDAR, molecular spectroscopy, and generation of medium and far-infrared (MIR,FIR) coherent radiation either by stimulated Raman scattering or resonant optical pumping of molecular transitions. By means of the molecular FIR laser optically pumped by the CO2 laser this spectral region was covered for the first time with thousands of CW laser lines of relatively high power so that the laser spectroscopy has been extended down to the microwave region 1.
14 schema:editor Nff8033b135ad4011a1e27875426df774
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N169a945959094d319804c166cf5505dd
19 schema:name High Power, Tunable Waveguide CO2 Lasers
20 schema:pagination 189-199
21 schema:productId N375abc43ff2a4fb28ce76004a2a12b49
22 N574cbab651be4c848e53d9c56063baa5
23 N9e4d87e9727b4edf94f16c66af8e8811
24 schema:publisher N4e131f71c0ee4f398946e07de06a490a
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014265724
26 https://doi.org/10.1007/978-1-4757-6187-0_14
27 schema:sdDatePublished 2019-04-16T00:47
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N5486235c83a544228ac4a12ad2ce9201
30 schema:url http://link.springer.com/10.1007/978-1-4757-6187-0_14
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0cab1ef7be1a40778ac14f77fb088799 rdf:first sg:person.011723573566.14
35 rdf:rest N21374a0139584925a5e0d87996da44c8
36 N169a945959094d319804c166cf5505dd schema:isbn 978-1-4757-6187-0
37 978-1-4757-6189-4
38 schema:name Physics of New Laser Sources
39 rdf:type schema:Book
40 N21374a0139584925a5e0d87996da44c8 rdf:first sg:person.014457422303.32
41 rdf:rest rdf:nil
42 N375abc43ff2a4fb28ce76004a2a12b49 schema:name doi
43 schema:value 10.1007/978-1-4757-6187-0_14
44 rdf:type schema:PropertyValue
45 N4e131f71c0ee4f398946e07de06a490a schema:location Boston, MA
46 schema:name Springer US
47 rdf:type schema:Organisation
48 N525e45bf873247c4ab31c247eaf6bba9 rdf:first Nc6e75fb4d2f14320801fb450ca21b20a
49 rdf:rest N5aec1486c3294fa895033a6210237437
50 N5486235c83a544228ac4a12ad2ce9201 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N574cbab651be4c848e53d9c56063baa5 schema:name dimensions_id
53 schema:value pub.1014265724
54 rdf:type schema:PropertyValue
55 N5aec1486c3294fa895033a6210237437 rdf:first Nf417e05263f84615b25ebb6f979ff5b4
56 rdf:rest Nca950e7023104e6a9cb55cbfaabca751
57 N6c612270d33f49ca85892a933ddab599 schema:familyName Abraham
58 schema:givenName Neal B.
59 rdf:type schema:Person
60 N91e854e72fc64f7b859fb20b5e57e2b4 schema:familyName Sona
61 schema:givenName Alberto
62 rdf:type schema:Person
63 N9e4d87e9727b4edf94f16c66af8e8811 schema:name readcube_id
64 schema:value 43f5e9b87346aa7c58be21472a52332b36d07200b39c8f65e3adaf4ab668dcc8
65 rdf:type schema:PropertyValue
66 Nc6e75fb4d2f14320801fb450ca21b20a schema:familyName Arecchi
67 schema:givenName F. T.
68 rdf:type schema:Person
69 Nca950e7023104e6a9cb55cbfaabca751 rdf:first N91e854e72fc64f7b859fb20b5e57e2b4
70 rdf:rest rdf:nil
71 Nf417e05263f84615b25ebb6f979ff5b4 schema:familyName Mooradian
72 schema:givenName Aram
73 rdf:type schema:Person
74 Nff8033b135ad4011a1e27875426df774 rdf:first N6c612270d33f49ca85892a933ddab599
75 rdf:rest N525e45bf873247c4ab31c247eaf6bba9
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
80 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
81 rdf:type schema:DefinedTerm
82 sg:person.011723573566.14 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
83 schema:familyName Strumia
84 schema:givenName Franco
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723573566.14
86 rdf:type schema:Person
87 sg:person.014457422303.32 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
88 schema:familyName Ioli
89 schema:givenName Nadia
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014457422303.32
91 rdf:type schema:Person
92 sg:pub.10.1007/bf00895012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033407602
93 https://doi.org/10.1007/bf00895012
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02798786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035736645
96 https://doi.org/10.1007/bf02798786
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/j.1538-7305.1964.tb04108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026920691
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1654037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732063
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.1714517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057782191
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.323761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057922682
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/jqe.1972.1076875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061300148
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
109 schema:name Dipartimento di Fisica, Università di Pisa and GNSM — CNR, Piazza Torricelli 2, 56100 Pisa, Italy
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...