On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Shigeki Akiyama , Hideaki Ishikawa

ABSTRACT

A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1

DOI

http://dx.doi.org/10.1007/978-1-4757-3621-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034094453


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Hideaki", 
        "id": "sg:person.07567600142.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567600142.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.", 
    "editor": [
      {
        "familyName": "Jia", 
        "givenName": "Chaohua", 
        "type": "Person"
      }, 
      {
        "familyName": "Matsumoto", 
        "givenName": "Kohji", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-3621-2_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-5214-1", 
        "978-1-4757-3621-2"
      ], 
      "name": "Analytic Number Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "zeta function", 
      "analytic continuation", 
      "such zeta functions", 
      "multiple Hurwitz zeta functions", 
      "zeta-functions", 
      "Hurwitz zeta function", 
      "location of singularities", 
      "Euler-Maclaurin summation formula", 
      "summation formula", 
      "Multiple L", 
      "complex functions", 
      "singularity", 
      "function", 
      "continuation", 
      "formula", 
      "variables", 
      "applications", 
      "types", 
      "location", 
      "detail", 
      "EulerZagier type", 
      "Related Zeta-Functions"
    ], 
    "name": "On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034094453"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-3621-2_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-3621-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1034094453"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_282.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-3621-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      48 URIs      41 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-3621-2_1 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Na34d818cf3aa4213bc3fc44b806716a6
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.
7 schema:editor N24fa918b68684e6e824a4914fcc2c906
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne24b0cd135444ff58912499bad0560a2
12 schema:keywords Euler-Maclaurin summation formula
13 EulerZagier type
14 Hurwitz zeta function
15 Multiple L
16 Related Zeta-Functions
17 analytic continuation
18 applications
19 complex functions
20 continuation
21 detail
22 formula
23 function
24 location
25 location of singularities
26 multiple Hurwitz zeta functions
27 singularity
28 such zeta functions
29 summation formula
30 types
31 variables
32 zeta function
33 zeta-functions
34 schema:name On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions
35 schema:pagination 1-16
36 schema:productId N23df66a72ef64d8ea235b8e17c6815c6
37 Ne880149d32374a009a8f4c4d520fb191
38 schema:publisher N900ffebbcac54638972ef2bf01450dea
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034094453
40 https://doi.org/10.1007/978-1-4757-3621-2_1
41 schema:sdDatePublished 2021-12-01T20:03
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N334e7416885447de955c4f294b291468
44 schema:url https://doi.org/10.1007/978-1-4757-3621-2_1
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N13daeb30237543e2a7a78d0c507e7fa6 rdf:first sg:person.07567600142.00
49 rdf:rest rdf:nil
50 N23df66a72ef64d8ea235b8e17c6815c6 schema:name doi
51 schema:value 10.1007/978-1-4757-3621-2_1
52 rdf:type schema:PropertyValue
53 N24fa918b68684e6e824a4914fcc2c906 rdf:first N37cc6867cf2b44718756383e03922361
54 rdf:rest N556461c7c59d435eaedba927cfef6a56
55 N334e7416885447de955c4f294b291468 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N37cc6867cf2b44718756383e03922361 schema:familyName Jia
58 schema:givenName Chaohua
59 rdf:type schema:Person
60 N556461c7c59d435eaedba927cfef6a56 rdf:first Nad202d26924840ee8cc98c0bc98a7499
61 rdf:rest rdf:nil
62 N900ffebbcac54638972ef2bf01450dea schema:name Springer Nature
63 rdf:type schema:Organisation
64 Na34d818cf3aa4213bc3fc44b806716a6 rdf:first sg:person.011153327405.03
65 rdf:rest N13daeb30237543e2a7a78d0c507e7fa6
66 Nad202d26924840ee8cc98c0bc98a7499 schema:familyName Matsumoto
67 schema:givenName Kohji
68 rdf:type schema:Person
69 Ne24b0cd135444ff58912499bad0560a2 schema:isbn 978-1-4419-5214-1
70 978-1-4757-3621-2
71 schema:name Analytic Number Theory
72 rdf:type schema:Book
73 Ne880149d32374a009a8f4c4d520fb191 schema:name dimensions_id
74 schema:value pub.1034094453
75 rdf:type schema:PropertyValue
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
80 schema:name Neurosciences
81 rdf:type schema:DefinedTerm
82 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
83 schema:familyName Akiyama
84 schema:givenName Shigeki
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
86 rdf:type schema:Person
87 sg:person.07567600142.00 schema:affiliation grid-institutes:grid.260975.f
88 schema:familyName Ishikawa
89 schema:givenName Hideaki
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567600142.00
91 rdf:type schema:Person
92 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
93 Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
94 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
95 Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...