On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Shigeki Akiyama , Hideaki Ishikawa

ABSTRACT

A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1

DOI

http://dx.doi.org/10.1007/978-1-4757-3621-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034094453


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Hideaki", 
        "id": "sg:person.07567600142.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567600142.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.", 
    "editor": [
      {
        "familyName": "Jia", 
        "givenName": "Chaohua", 
        "type": "Person"
      }, 
      {
        "familyName": "Matsumoto", 
        "givenName": "Kohji", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-3621-2_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-5214-1", 
        "978-1-4757-3621-2"
      ], 
      "name": "Analytic Number Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "zeta function", 
      "analytic continuation", 
      "such zeta functions", 
      "multiple Hurwitz zeta functions", 
      "zeta-functions", 
      "Hurwitz zeta function", 
      "location of singularities", 
      "Euler-Maclaurin summation formula", 
      "summation formula", 
      "Multiple L", 
      "complex functions", 
      "singularity", 
      "function", 
      "continuation", 
      "formula", 
      "variables", 
      "applications", 
      "types", 
      "location", 
      "detail", 
      "EulerZagier type", 
      "Related Zeta-Functions"
    ], 
    "name": "On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034094453"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-3621-2_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-3621-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1034094453"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_282.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-3621-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-3621-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      48 URIs      41 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-3621-2_1 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N7925041c7b17410c996f34a5d68a20fc
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description A multiple L-function and a multiple Hurwitz zeta function of EulerZagier type are introduced. Analytic continuation of them as complex functions of several variables is established by an application of the Euler-Maclaurin summation formula. Moreover location of singularities of such zeta functions is studied in detail.
7 schema:editor N8418896f76884db583c5c5efef99a57e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6c0f5fb11d5b4b619e18fd9b352180c4
12 schema:keywords Euler-Maclaurin summation formula
13 EulerZagier type
14 Hurwitz zeta function
15 Multiple L
16 Related Zeta-Functions
17 analytic continuation
18 applications
19 complex functions
20 continuation
21 detail
22 formula
23 function
24 location
25 location of singularities
26 multiple Hurwitz zeta functions
27 singularity
28 such zeta functions
29 summation formula
30 types
31 variables
32 zeta function
33 zeta-functions
34 schema:name On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions
35 schema:pagination 1-16
36 schema:productId N4e54c46316604a99a1b4aa53272446b7
37 N50cb2f5716d3497cb3e6327ef065703f
38 schema:publisher N0bcd3201506345138f5368265b262912
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034094453
40 https://doi.org/10.1007/978-1-4757-3621-2_1
41 schema:sdDatePublished 2021-12-01T20:03
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nebe56345e94647cc8e1ead539dece8d7
44 schema:url https://doi.org/10.1007/978-1-4757-3621-2_1
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N0bcd3201506345138f5368265b262912 schema:name Springer Nature
49 rdf:type schema:Organisation
50 N1e71182b46dc4236bd565349e9d68bf6 rdf:first Nae8144581cb8480da2da51e1a3a21b7b
51 rdf:rest rdf:nil
52 N4e54c46316604a99a1b4aa53272446b7 schema:name doi
53 schema:value 10.1007/978-1-4757-3621-2_1
54 rdf:type schema:PropertyValue
55 N50cb2f5716d3497cb3e6327ef065703f schema:name dimensions_id
56 schema:value pub.1034094453
57 rdf:type schema:PropertyValue
58 N63854f3dfa534b00be5b335338bbaabd rdf:first sg:person.07567600142.00
59 rdf:rest rdf:nil
60 N6c0f5fb11d5b4b619e18fd9b352180c4 schema:isbn 978-1-4419-5214-1
61 978-1-4757-3621-2
62 schema:name Analytic Number Theory
63 rdf:type schema:Book
64 N7925041c7b17410c996f34a5d68a20fc rdf:first sg:person.011153327405.03
65 rdf:rest N63854f3dfa534b00be5b335338bbaabd
66 N8418896f76884db583c5c5efef99a57e rdf:first Nc00c4bbdf9e5427ea6364afd2d22efdf
67 rdf:rest N1e71182b46dc4236bd565349e9d68bf6
68 Nae8144581cb8480da2da51e1a3a21b7b schema:familyName Matsumoto
69 schema:givenName Kohji
70 rdf:type schema:Person
71 Nc00c4bbdf9e5427ea6364afd2d22efdf schema:familyName Jia
72 schema:givenName Chaohua
73 rdf:type schema:Person
74 Nebe56345e94647cc8e1ead539dece8d7 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
80 schema:name Neurosciences
81 rdf:type schema:DefinedTerm
82 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
83 schema:familyName Akiyama
84 schema:givenName Shigeki
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
86 rdf:type schema:Person
87 sg:person.07567600142.00 schema:affiliation grid-institutes:grid.260975.f
88 schema:familyName Ishikawa
89 schema:givenName Hideaki
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567600142.00
91 rdf:type schema:Person
92 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
93 Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
94 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
95 Graduate school of Natural Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...